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The Bloch Equations 
 

The Bloch equations show up frequently in imaging, particularly for predicting 
the image contrast that will result from a particular imaging sequence, or for calculating 
how much steady state signal will be available.  The goal of this discussion is to show the 
basic concepts involved in the derivation, and develop them through the point of 
describing relaxation in the absence of an RF pulse.  We will leave the equations without 
discussion of the inclusion of B1 (RF pulse) effects, which need to be considered to 
accurately model excitation of a sample, but can be ignored for a basic understanding of 
the imaging process. 

 
The Bloch equations are a set of coupled differential equations that describe the 

behavior of the net magnetization in a sample under the influence of B0. The following 
description is taken out of Chapter 4 in Haacke et al., Magnetic Resonance Imaging: 
Physical Principles and Sequence Design. Wiley and Sons: New York (1999) (“the green 
book” at the CMRR). 

 
Start with a single spin in a static magnetic field: how do you figure out what it’s 

doing?  There is no net force on the dipole, so we’re concerned with the effect of torque 
on the angular momentum 

∑ ×== B
dt
Ld μτ  

Remember the relationship between angular momentum, L, and magnetic 
moment, μ, for a spin; it is determined by the gyromagnetic ratio (μ=γL), so the equation 
becomes: 

B
dt
d

×= μγμ  

For a population of spins, the net magnetic moment is given by: 
  

∑=
i

iM μ  

Resulting in: 

BM
dt
Md

×= γ  

The net magnetization is a vector, as is the field, B.  For simplicity, we will 
consider a uniform magnetic field B oriented in the z direction: B = B0 z) . In the absence 
of interactions between spins (no relaxation) the three equations generated by the cross 
product are: 
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This steady-state solution, without relaxation, shows how precession is 
determined by the cross-product, since the solution to these coupled differential equations 
will be  
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There are several different ways of representing the transverse magnetization, depending 
on the application (M+ = Mx+iMy, M⊥ = Mx x)+My y) ).  

 
To add in a relaxation term, we will start with the longitudinal magnetization, Mz. 

We know that once perturbed, this component of the magnetization will recover at a rate 
proportional to the difference between the steady-state magnetization, M0, and the current 
magnetization: 
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The solution to this “first order differential equation with an inhomogeneity” is  
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The steady-state solution can be verified by looking at the answer for t → ∞. 

 
For the transverse magnetization, adding decay at a rate 1/T2 gives us the 

following differential equations to solve: 
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Resulting in: 
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Which can be more simply represented as M⊥ =M⊥ (0)e-t/T2 in the rotating frame. 
   
  These equations have been derived assuming always a constant B = B0 z) . 
Therefore, these solutions describe only relaxation after a pulse, or after perturbation 
from equilibrium.  The pulse can be accounted for by realizing that, during the RF pulse, 
Beff = B1x x)+B1y y)+B0 z) .  
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The Bloch Equations: predicting image contrast and calculating the Ernst angle 
 

So now we have the Bloch equations with the form:  
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A brief reminder: these equations came from solving the basic equation: 
 

BM
dt
Md

×= γ  

 
for the description of steady-state precession, then adding decay terms to describe 
observed behavior. These equations describe only the relaxation of magnetization in the 
absence of RF pulses. The steady-state solution can be verified by looking at the answer 
for t → ∞. 
 
Without adding the complication of solving the Bloch equations during the pulse, we can 
use these equations to understand image contrast – how much signal is found in what 
kind of tissue at the time the signal is acquired. For this discussion, we’ll define the 
following terms: 

− TR:  repetition time of an experiment (time between repeated RF pulses) 
− TE:  echo time, time between excitation pulse and acquisition of center of k-space 
− TI:  inversion time, time between 180 inversion pulse and excitation pulse in a 

magnetization-prepared experiment 
− T1:  longitudinal (spin-latice) relaxation rate 
− T2:  transverse (spin-spin) relaxation rate 
− M0:  equilibrium magnetization 
− Mss:  steady-state magnetization 

 
The process of using the Bloch equations to predict the outcome of an experiment will be 
a combination of intuition and mathematics.  We’ll use the Bloch equations to describe 
how magnetization decays after a pulse, and we’ll manually insert the effect of the RF 
pulse. To the best of my knowledge, analytical solution of the Bloch equations during the 
pulse is rarely possible, and programs such as PulseTool apply a numerical solution, 
based on the sum of a series of low-angle flips. 
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We’ll start with a simple inversion recovery experiment (no imaging gradients): 
 
 
 
 
Tx 
 
Gro 
 
Gpe 
 
Gss 

 
Rcvr 
 
  * Not drawn to scale – TE is much shorter than TI.  
 
Now we’ll just walk through the sequence one step at a time, predicting the longitudinal 
and transverse magnetization at each step. 
 
IF TR >> T1 (or if this experiment is only performed once), then the magnetization just 
before the application of the first pulse is fully relaxed: 
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After the inversion pulse, the longitudinal magnetization is flipped 180°, and the 
transverse magnetization is still zero: 
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Then, during the delay before the next pulse, the longitudinal magnetization decays. Just 
before the excitation pulse, the magnetization (at time t = TI-) is: 
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We will let the excitation pulse be any flip angle, not just 90°, and for a minute, we will 
not assume that the transverse magnetization is 0: 
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This equation points out the complication that arises if transverse magnetization does not 
decay or get crushed between experiments – stimulated echoes are generated, which 
makes the evolution of the magnetization much more difficult to follow (although 
sometimes these stimulated echoes are actually very useful).  For now, we’ll assume that 
TR >> T2, so M⊥ is still 0: 
 

)sin()21()sin()()(

)cos()21()cos()()(
1

1

/
0

/
0

αα

αα
TTI

z

TTI
zz

eMTIMTIM

eMTIMTIM
−−+

⊥

−−+

−==

−==
 

 
Finally, we calculate the magnetization when the data is acquired, at t=TE: 
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The longitudinal magnetization is invisible to our RF coil, so our signal is related just to 
the transverse magnetization. Now we have an equation that describes our signal in an 
inversion-recovery experiment (which starts out with a fully relaxed sample, so TR is not 
part of the equation) as a function of TI, T1, α, TE, and T2.   
 
Exercises 
 

1) For an anatomical image acquired at 1.5T, where the T1 and T2 values for grey 
matter, white matter, and CSF are given in the table below, predict the relative 
signal strength (i.e., if M0,GM=M0,WM=M0,CSF) in the three compartments when an 
image is acquired with flip angle α = 90°, TI = 3.1s, and TE = 5ms. 

2) How would the answer be different if α = 45°? 
 
Tissue relaxation times at 1.5T taken from Haacke, Ch 1., pg. 9: 
 

Tissue T1 (ms) T2 (ms) 
Grey matter 950 100 
White matter 600 80 
Cerebrospinal fluid 4500 2200 
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Imaging with TR << T1 
 
A simple imaging experiment: 
 
 
 
 
Tx 
 
Gro 
 
Gpe 
 
Gss 

 
Rcvr 
 
 *Note that we’ve pulled the inversion pulse (the magnetization preparation) outside of 
the imaging loop.  If we can get the entire image acquired on a time frame that is small 
relative to the T1’s, then the T1 contrast is the same throughout the image and we only 
needed one 180° pulse. 
 
If the excitation flip angle is large, then a large proportion of the longitudinal 
magnetization is put down into the transverse plane for the first read-out line, then 
crushed after that line (those gradients on the end of Gro and Gpe lines are crusher 
gradients, designed to dephase any transverse magnetization that remains after the read-
out, in order to avoid having it come back into the image on the next repetition).  If TR 
<< T1, and the excitation flip angle is large, then only a small fraction of the longitudinal 
magnetization recovers before everything is crushed (spoiled) in the transverse plane (e.g. 
only 1-e-.010/.95 = .01 remains on the longitudinal axis), so for the next iteration, only a 
tiny fraction of the magnetization remains. 
 
Solution: use a low flip angle, so only a little of the magnetization is spent on each 
repetition. 
 

~TI TE 
TR … … 
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Calculating the Ernst angle for repeated measurements 
 
Functional imaging experiments have a similar problem.  Scans are repeated with 
repetition times >> T2, so we don’t have to worry about transverse magnetization and 
crusher gradients. But we still have to worry about the fact that TR is often less than T1.  
When this is the case, it is ideal to use a flip angle less than 90°, for the same reason that 
anatomical imaging sequences use a low flip angle.  The flip angle that maximizes 
available steady state magnetization in either a functional or an anatomical scan is called 
the Ernst angle.  Here’s the derivation: 
 
We will pick up the experiment in the middle, when we’ve reached steady state, using the 
expression Mz(tn) to denote the longitudinal magnetization after the nth pulse (nth TR): 
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The first part of that expression describes how much magnetization was left after the 
pulse, and the second part describes how much recovered during the TR. In the steady-
state, Mz(tn) =Mz(tn+1) =Mss, producing: 
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The magnetization in the transverse plane is then: 
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So we simply want to find the flip angle, α, that maximizes the magnitude in the above 
equation. Taking the derivative with respect to α and setting it equal to zero produces: 
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So the Ernst angle, α, is  
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