Chapter

As its name implies, the goal of magnetic resonance imaging is the formation
of an image. It is important to recognize that in the context of MRI, an image
is not simply a photograph of the object being scanned. It is a map that depicts
the spatial distribution of some property of the atomic nuclei (or spins) within
the sample. That property might reflect the density of the spins, their mobil-
ity, or the T, or T, relaxation times of the tissues in which the spins reside.

Creating an image from MR signals may now seem commonplace, but
more than 25 years passed between the first NMR experiment (1945) and the
first MR image (1972). In the intervening period, researchers actively strove to
make their samples as homogeneous as possible so that no spatial variability
could corrupt the data, and therefore, no images were made. Remember that
the 2003 Nobel Prize in Physiology or Medicine was awarded not for the dis-
covery of the medical applications of magnetic resonance, but for the develop-
ment of techniques for image formation. In this chapter, we describe the con-
cepts of image formation by illustrating how spatial information is encoded
and decoded by MRI scanners. Specific topics include slice excitation, frequency
encoding, phase encoding, and the representation of MRI data in k-space.

The fundamental concept underlying image formation in MRI is that of
the magnetic gradient, or spatially varying magnetic field, introduced by
Lauterbur in 1972 (for which he won the Nobel Prize in 2003). In the first NMR
experiments conducted by Purcell, Bloch, and other early researchers, the mag-
netic fields were uniform, so that all spins in the entire sample experienced the
same magnetic field. But as Lauterbur later demonstrated, superimposing a
second magnetic field that varies in strength across space will cause spins at
different locations to precess at different frequencies in a controlled fashion.
By measuring changes in magnetization as a function of precession frequency,
the total MR signal can be separated into components associated with differ-
ent frequencies, thus providing information about the spatial distribution of the
targeted atomic nuclei.

As we did in Chapter 3, we have constructed two independent paths for
understanding the principles of image formation. The conceptual path includes
descriptions and analogies that do not depend heavily on equations, and the
quantitative path includes mathematical equations that elaborate on the image
formation principles (Figure 4.1).
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image A visual description of
how one or more quantities
vary over space.
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Figure 4.1 Overview of the chapter. We have structured this chapter (and Chapter 3)
along two parallel paths, each covering the basic principles of MR image formation.
The conceptual path uses physical models and analogies to cover these principles in a
straightforward and intuitive manner, while the second quantitative path introduces
the relevant equations. While the two paths cover the same principles in different
ways, the figures throughout the chapter are intended to be accessible to all readers.

Conceptual Path

The central innovation that made MR imaging possible was the introduction
of superimposed gradient (spatially varying) magnetic fields. Because the pre-
cession frequency is proportional to the strength of the magnetic field, gradi-
ent magnetic fields cause atomic nuclei in different spatial locations to precess
at different rates. By dividing the MR signal into components with different
frequencies, we can generate maps (or images) that provide information about
the characteristics of those atomic nuclei.

To resolve spatial information in three dimensions, we need at least three
gradient fields. In MRI, the static magnetic field is always oriented along the
longitudinal direction (commonly known as the z-direction), which is parallel
with the scanner bore. The gradient magnetic fields along the x, 1, and z direc-
tions indicate how the strength of that static magnetic field changes in each of
the three directions, as shown in Figure 4.2. It is critical to remember that the
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direction of the magnetic field is always along the longitudinal direction; gra-
dient fields change the strength of the static magnetic field at a given spatial
location, but not its direction.

Since gradient fields along any direction will modulate the spin preces-
sion frequencies, one cannot turn on all gradient fields at the same time and
hope to resolve spatial information. Instead, a sequence of gradient field
changes, along with radiofrequency pulses, is used to create an MR image. We
break down MR image formation into three steps, which often occur in a con-
sistent sequence. First, we use a process called slice selection to select a two-
dimensional slice of the object to be imaged, and then we systematically resolve
the remaining two dimensions within this slice, by frequency encoding and
phase encoding, to obtain a final image.

Slice Selection

Most structural MRI and all functional MRI involve the construction of three-
dimensional images from sets of two-dimensional slices. Direct three-dimen-
sional imaging is used for some structural MRI, however it is a much slower
process, and is therefore inappropriate for measurements of brain function.
Thus, a common first step in producing an MR image is dimensional reduction:
restricting the MR signal to one two-dimensional slice ata time. This is termed
slice selection.

As we introduced in the previous chapter, the MR signal recorded in the
detector coils contains contributions from all the atomic nuclei that received an
on-resonance excitation pulse. Thus, selection of any particular slice requires
the excitation of spins within that slice, but not of any other spins in the sam-
ple. So, the key element of slice selection is to ensure that there is a match
between the precession frequency of the spins within the desired slice and the
radiofrequency (RF) excitation pulse, but no such match elsewhere. Imagine
that the MR scanner introduced a positive gradient along the z direction, often
given the label G,. Spins toward the back of the scanner (i.e, at the top of the
brain) would precess more rapidly and spins toward the front of the scanner
would precess more slowly. This scenario is represented in highly stylized form
in Figure 4.3A. To select the middle slab, we set the frequency of the RF exci-
tation pulse to match that of the middle slab. This ensures that the spins in the
middle slab are on resonance with the excitation pulse, whereupon many will
absorb energy and change from low- to high-energy states. Then the MR sig-
nal will only be emitted by spins in the middle slab following the cessation of
the excitation pulse.

Figure 4.2 A schematic illustration of
the spatial distributions of the x-, y-, and
z-gradient magnetic fields. Note that
each of these gradients only changes the
strength of the magnetic field along the
relevant axis; they do not alter the direc-
tion of the magnetic field.

slice selection The combined use of a
spatial magnetic field gradient and an
electromagnetic pulse to excite spins
within a slice.
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Figure 4.3 A schematic illustration of slice selection. Before excitation, a
spatial gradient is introduced (by convention, along the z direction) that
causes the precession frequencies of the atomic nuclei of interest to differ
along that gradient. If all nuclei in the desired slice had the same precession
frequency, as shown in (A), then an excitation pulse at that precession fre-
quency would excite all spins in that slice. However, because precession
frequency changes continuously along the slice-selection direction, as
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shown in (B), an excitation pulse contains a band of frequencies whose
spectrum is matched to those of nuclei within the desired slice.

: In reality, no magnetic gradient can create discrete bands of pre-
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cession frequencies across space. Instead, if a spatial gradient (G) field
is turned on along the slice direction (e.g., the z-direction), it will cause
a continuous change in the strength of the magnetic field, as illus-
trated by the continuous change in the directions of the arrows in Fig-
ure 4.3B. This means that a band within the gradient field, such as the

(B)

green band in Figure 4.3B, will contain spins with a range of preces-
sion frequencies. To match this frequency band, the excitation radiofre-
quency (RF) pulse will need to contain the same frequency range. For-
tunately, if we know the characteristics of the static magnetic field and
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of the gradient along the direction of slice selection, as well as the
desired slice location, we can determine the center frequency needed
for our excitation pulse. Moreover, from the desired slice thickness,
we can calculate the necessary bandwidth for the excitation pulse (i.e.,
the range of frequencies it needs to include). Because slice selection
usually involves the generation of one gradient across space and a
single excitation pulse, it can be completed very rapidly, usually
within a few milliseconds.

Immediately after the excitation pulse, the affected spins begin to
undergo T, and T, relaxation processes, as described in Chapter 3. T,
relaxation causes a loss of spin coherence in the transverse plane and
T, relaxation leads to an exponential recovery of the longitudinal mag-
netization—both resulting in the decay of the MR signal. Because of
these relaxation effects, especially the very rapid T, decay, slice selec-
tion must be immediately followed by the application of other gradi-
‘ ents that provide information about the distribution of atomic nuclei
| within the slice itself.

spatial gradient (G) A magnetic field
whose strength varies systematically
over space. Note that since a given spa-
tial location only experiences one mag-
netic field, which represents the sum of
all fields present, spatial gradients in
MRI act to change the effective strength
of the main magnetic field over space.

pulse sequence A series of changing
magnetic field gradients and oscillat-
ing electromagnetic fields that allows
the MRI scanner to create images sen-
sitive to a particular physical property.

The pattern of radiofrequency pulses and magnetic gradients used

to collect a given type of MR image is known as a pulse sequence. Over

the course of this chapter, we will introduce the basic elements of pulse
sequences in a conventional graphical format, so that readers can become famil-
iar with their representation. The basic format of a pulse sequence diagram
consists of a series of horizontal lines, each representing how a different com-
ponent of the MR scanner changes over time. The elements that we have intro-
duced so far, as part of slice selection, constitute two parts of the MR scanner:
the radiofrequency coil and the z-gradient (Figure 4.4). The excitation pulse
will be represented throughout this book as a set of three ovals; these schemat-
ically convey the idea of a band of frequencies within a sinc function (see Fig-
ure 4.13 for an example). The slice-selection gradient is shown, by convention,
on the z-gradient line; it consists of an initial positive gradient, followed by a
second negative gradient. (This second negative gradient is applied to coun-




teract the effects of the excitation pulse on the por-
tion of the slice selection gradient within the selected  RF pulse
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slice). excitation
Note that the pulse sequence diagram should be
considered a schematic, not literal, representation of

z-gradient

what the scanner is doing. If the slice selection is
along the x-axis, for example, then an x-gradient will
be necessary; if the slice is tilted slightly, as is com-

Figure 4.4 Elements of a pulse sequence necessary for slice selec-

oty then some combination of t\e}fo ar thret? gradi- tion. To select a slice, an excitation pulse is delivered through the
ents will be necessary. For the remainder of thisbook,  radiofrequency coil (i.e., head coil in fMRI). Simultaneously, a mag-
we will simplify the pulse sequence diagrams by  netic gradient is introduced within the sample. By convention, we
assuming that the slice-selection gradient is purely ~ will indicate the slice-selection gradient along the z-direction. Each
along the z-direction, and that the x- and y-gradients line of a pulse sequence diagram indicates a separate component of

are used to localize the distribution of atomic nuclei
within that slice.

Frequency Encoding

Once a slice is selected, all excited spins contribute to the MR signal. Thus, the
next step is to apply additional gradients that cause spins at different spatial
locations to precess at different rates, so that their individual contributions can
be measured. For reasons that will become apparent in this and the following
section, the application of magnetic gradients within a slice involves two inter-
twined processes known as frequency encoding and phase encoding. We con-
sider these processes in separate sections, both for clarity, and because they
are often conducted in a particular sequence.

Let's begin by considering a very simple task: creating a one-dimensional
image that identifies the locations of two thin vials of water (Figure 4.5). Note
that this example is not arbitrarily chosen; Paul Lauterbur used a similar setup
when creating the very first MR image (see Figure 1.11). Suppose that we have
just completed the slice selection step, as described above, by exciting the spins
within a single two-dimensional slice, but that we have not introduced any
other spatial gradients (Figure 4.5A). All of the protons in the water molecules
within the slice would therefore be precessing at the same rate. Our detector
coils would measure an emitted MR signal that oscillated at that precession
frequency, and that decayed over time based on the T, value of hydrogen in
water. However, we would not be able to tell from this MR signal whether
there were one, two, or many vials of water within our slice. In fact, all we can
tell from this MR signal is that there are protons somewhere within our slice,
but we have no idea where.

Suppose that we repeat our experiment while introducing a magnetic gra-
dient from left to right, so that the magnetic field is relatively weaker near the
left vial and relatively stronger near the right vial (Figure 4.5B). Now, the pro-
tons within the two vials will have distinct precession frequencies: slower in
the left vial, and faster in the right vial. Because of this effect, the first step of
gradient application is often called frequency encoding. The resulting MR sig-
nal will still have high-frequency oscillations and transverse relaxation, as it did
before the gradients were introduced. But now there are slower oscillations,
superimposed on the faster oscillations at the resonant frequency that provide
information about the width and spacing of the two vials. (These reflect con-
<tructive and destructive interference between signals with slightly different
frequencies, akin to beat frequencies in music.) By using signal processing tools,

the scanner hardware, with the x-axis indicating time and the y-
axis indicating the strength of that component at that point in time.

frequency-encoding gradient A gradi-
ent that is applied during the data
acquisition period, so that the spin
precession frequencies change over
space.

phase-encoding gradient A gradient
that is applied before the data acquisi-
tion period, so that spins can accumu-
late differential phase offsets over
space.
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Figure 4.5 The use of a magnetic gradient to resolve the spatial locations of two vials
of water. (A) If both water vials experience the same, constant magnetic field (i.e.,
there is no frequency encoding), then the measured MR signal reflects the total con-
tributions of all protons within those vials, Thus, the resulting image (at bottom)
would provide information about how much water was present, but would not pro-
vide information about where the vials were located. (B) By introducing variation in
the magnetic field strength over space (i.e., includin g frequency encoding), the result-
ing MR signal will have multiple frequency components whose strength depends on
the relative locations of the vials. The MR signal could thus be decomposed into a
one-dimensional image of the vials.

we can resolve the different resonance frequencies that led to the different oscil-
lations in the MR si gnal; this information can, in turn, be used to map the phys-
ical distance between the two vials. In summary, the introduction of a single
gradient makes it possible to construct a map of proton density along the direc-
tion of that gradient; effectively, this map is a one-dimensional image.

To indicate the steps of frequency encoding on our pulse sequence dia-
grams, we can introduce two more lines (Figure 4.6): one for the frequency—
encoding gradient (often indicated as G,), and one for the receiver coil, indicat-
ing the period of data acquisition (sometimes called the “readout period”). Note
that the readout period is sometimes omitted from pulse sequence diagrams,
especially those with complex gradient patterns, like the ones we will intro-
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Figure 4.6 Elements of a pulse sequence necessary for fre-
quency encoding within a slice, To create a one-dimen-
sional map within a slice, a second magnetic gradient
must be applied during data acquisition. Note that data
acquisition usually occurs with some delay after excita-

RF pulse

Slice selection

wpient tion for T,- or T,-sensitive images. By convention, this fre-
frenenrerzoding quency-encoding gradient is usually indicated as G,.
x-gradient [LI.EIIJ
Readout r“'_l"\

Data points collected

duce in the next chapter. In general, data acquisition can be assumed to occur
simultaneously with the manipulation of the frequency and phase gradients.

Phase Encoding

How can we move from one-dimensional data of the type illustrated in Figure
4.5B to a complex two-dimensional image? One intuitive approach is to collect
a large number of one-dimensional projections, each oriented differently within
the slice, and then superimpose them to construct a two-dimensional image.
This sort of strategy could be used for image creation; indeed, an analogous
approach underlies tomographic techniques like CAT scanning, but it has some
severe disadvantages. Most notably, the construction of even a simple image
would require a large number of sequential excitations, and the collection of
much redundant data, making this strategy very slow and inefficient. A much
better approach would involve collecting minimal but sufficient data to uni-
formly cover one part of the image (or even the entire two-dimensional image)
following a single excitation pulse. To do this, we must introduce another spa-
tial gradient, in a step known as phase encoding.

The key concept of phase encoding is the sequential application of a sec-
ond gradient within the slice that alters spin precession frequencies in a spa-
tially controlled manner. Why must we apply the frequency-encoding and
phase-encoding gradients sequentially, rather than simultaneously? Suppose
that we applied positive x- and y-gradients at the same time and with the same
strengths. Spins in the top right of the slice would experience the strongest
magnetic field (remember that spatial gradients alter the strength of the mag-
netic field but not its direction), while spins in the lower left of the slice would
experience the weakest field strength. Thus, the simultaneous application of
both x- and y-gradients would simply introduce a linear change in precession
frequency along a diagonal axis between the x and y directions. We would be
no better able to resolve the two-dimensional spatial information than if we
had applied only one gradient.

Thus, in the simplest form of phase encoding, we first apply one gradient
(say the y-gradient) before the other and before any MR signal is acquired. This
causes spins along the first gradient to precess at different rates depending on
their positions, so that by the time the second gradient is introduced, these
spins already differ in their phase (i.e., the current angle of precession). The
characteristic of the recorded MR signal will depend on the combination of
phase- and frequency-gradients that were applied. If a strong positive y-gra-
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Figure 4.7 Elements of a pulse sequence necessary for fre-

quency and phase encoding within a slice. To create a two- RF pulse

dimensional image of a given slice, two independent mag- excitation

netic gradients must be used within that slice. In many

cases, a phase-encoding gradient is applied before the fre- Slice selection

quency-encoding gradient (as shown in this simple z-gradient

schematic), so that there is time for phase differences ,

among spins to accumulate along that direction. However, Peequieitiy SEOCRE -
y-gradient

the frequency- and phase-encoding gradients can also be
acquired simultaneously (see Figure 5.32). By convention,

k g 5 z « v TPhase- di
the phase-encoding gradient is usually indicated as G, R

y-gradient

Readout

dient is applied during phase encoding, then the app lication of an x-gradient
will cause the kind of diagonal change in precession frequency that was
described in the previous paragraph. But if a very weak y-gradient is applied,
then the precession frequency would change across the x-direction, with min-
imal changes in the y-direction. If a negative y-gradient is applied, then the
precession frequency will again change along a diagonal axis, but along the
opposite diagonal as the one before. The key concept is that these different pat-
terns of precession frequencies will lead to different recorded MR signals,
depending on the distribution of spins over space. This means that by record-
ing the MR signal many times, following many different combinations of gra-
dients, we can effectively estimate the characteristics (i.e., the density and dis-
tribution of specific atomic nuclei) of the object we are imaging. We will explore
further the use of two magnetic gradients for changing the pattern of recorded
MR signal, in the discussion of k-space, later in this chapter.

If frequency and phase encoding are separated, as in this example (and as
illustrated in Figure 4.7), then the resolution along the phase-encoding direc-
tion determines the number of repeated excitations (and thus the total time)
required to collect the entire image. For example, if we want to collect an image
with 256 % 256 resolution, we would need 256 separate excitations, each with
a different phase-encoding gradient. Many anatomical images are collected in
this way, taking a few tens of seconds. However, images can be collected much
more rapidly if we allow frequency and phase encoding to occur simultane-
ously. Functional MRI almost always uses very fast pulse sequences in which
two gradients alternate rapidly over the period of data acquisition. For such
sequences, the distinction between frequency- and phase-encoding gradients
can be less obvious. In Chapter 5, we introduce those types of sequences that
are most commonly used for fMRL

Conceptual Path: Summary of Image Formation

We can now construct a sequence of events (Figure 4.8) that underlies the for-
mation of a three-dimensional MR image: first, the selection of a slice in which
spins will be excited at a particular resonant frequency (in blue); then the pre-
application of one spatial gradient during phase encoding (in yellow), and the
simultaneous application of another gradient for frequency encoding during
acquisition of the MR signal (in red).
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Figure 4.8 Summary of image forma-
tion. For most images acquired during
fMRI experiments, three steps are used:
initial selection of a two-dimensional
slice (blue), and combined phase encod-
ing (yellow) and frequency encoding
(red). Data acquisition is typically done
concurrently with encoding.
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These steps are conceptually straightforward, however, our discussion so
far has over-simplified some of the complex mathematical issues. In particu-
lar, using the algebraic approach (see Box. 4.1) to reconstruct the MR signal
into an image would be very computationally intensive, especially for high-res-
olution images. For example, anatomical images are frequently acquired with
2 matrix size of 256 x 256 voxels (i.e., 65,536 total voxels in a single slice). To
resolve such complex images, the information recorded during data acquisi-
tion is subjected to a computationally efficient mathematical process called a
Fourier transform. We discuss the mathematical foundations of image forma-
tion, including the application of the Fourier Transform, in the following quan-
titative path.

Quantitative Path

Spatial encoding results from the effects of gradient magnetic fields on the

detected MR signal. In order to understand the process of image formation

quantitatively, we will need to characterize how the MR signal changes as a

function of the particular magnetic field gradients that are app lied. Thus, we

will begin this section by analyzing the MR signal under magnetic gradients

using the Bloch equation. This is followed by theoretical and experimental Fourier transform A mathematical
descriptions of the various spatial encoding steps such as slice selection, fre- technique for converting a signal (i.e.,

quency and phase encoding, and image reconstruction. chariges Inintensity;oyer ime) inio its
power spectrum.

Larmor frequency The resonant fre-
Analysis of the MR Signal quency of a spin within a magnetic
0 Lze - field of a given strength. It defines the

T ! frequency of electromagnetic radiation
Recall that the precession frequency of a spin within a magnetic field (i.e., the ne;lde i gurmg 5 citatis,: t6 mike ]

_armor frequency) is determined by two factors: the gyromagnetic ratio, which  gpins change to a high-energy state, as
is a constant for a given atomic nucleus, and the magnetic field strength (see well as the frequency emitted by spins
Equation 3.21). Likewise, the net magnetization of a spin system precesses  when they return to the low-energy
around the main field axis at the Larmor frequency when tipped toward the  state.
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BOX 4.1 An Example of Spatial Encoding

In this box, we provide an integrative
perspective on spatial encoding of the
MR signal, using a graphical representa-
tion that involves basic algebra and
geometry. We begin by emphasizing one
core concept of MR data acquisition: that
the scanner records the MR signal at dis-
crete points in time. Suppose that we
again want to create an MR image of two
small vials containing different liquids
(e.g., arterial and venous blood). As will
be covered in much more detail in Chap-
ter 5, we could select pulse sequence pa-
rameters such that the amount of MR
signal generated would differ between
these vials (e.g., by using a sequence

Time 0

Vial 1 Vial 2

[B)

—

Time point 1

LR

with an intermediate echo time, TE), but
we would still face the challenge of iden-
tifying which vial was which.

If we excited a slice containing both
vials, the total MR signal emitted would
contain the contributions from all spins
in the slice (Figure 1, left), as given by
the sum S, of the vectors A and B. There
would be no way to tell how much of
that signal came from Vial 1 and how
much from Vial 2. Next, we can apply a
magnetic gradient whose amplitude G
is along the direction separating the two
vials, here shown as going from left-to-
right (i.e., the x-direction). After that
gradient is left on for a short while,

Time

Vial 1 Vial 2

al

Sz="E T

Time point 2

Resulting inf¥= (S + S,)/2, and = (8, - 8,)/2

Figure 1 Resolving two spatial locations using a single gradient. If there are two vials,
each with an unknown signal intensity, then the total MR signal recorded following exci-
tation will be the sum of the signals from both vials (as shown at left). However, if a spa-
tial gradient is introduced and left on long enough for the spin precessions in each vial
to become 180 degrees out of phase, then the total MR signal recorded would equal the
difference in signals between the vials (as shown at right). By using information collected
at these two time points, one could calculate the signal emitted by spins within each of
the twao vials, effectively creating a two-voxel image.

spins that experienced a stronger gradi-
ent (i.e., those to the right in this figure)
would precess relatively faster than
spins that experienced a weaker gradi-
ent. Thus, the received signal will have
a new intensity S, that is governed by
the sum of the vectors A and B. To
make solving for A and B simplest, we
can arrange to acquire data at a specific
time point such that the rotation angles
of vectors A and B are 180 degrees out
of phase (Figure 1, right). By knowing
how much MR signal was measured at
each time point (0 and f), we can calcu-
late the MR signal associated with each
of the two vials, using the algebraic
equations shown in the figure.

We can use a similar approach to ex-
pand our analysis of these two vials to
more complex examples. Suppose that
we wanted to identify the MR signal as-
sociated with not two, but 64 different
spatial locations along one dimension.
We would have to collect data at 64 dif-
ferent points in time, each corresponding
to a different x-gradient. (Technically
considered, this could be accomplished
by turning on a single gradient and
measuring the MR signal amplitude at
64 times that reflect phase differences
evenly spaced from 0 to 360 degrees.) In
essence, the use of a single spatial gradi-
ent generates differences in precession
frequencies that in turn allow the separa-
tion of MR signals coming from different
spatial locations, To resolve more loca-
tions aléng a spatial dimension, the scan-
ner must collect information about the
MR signal at more points in time.

Two-dimensional spatial encoding,
as introduced in the main text, leads to
additional complexities. If we simply
turned on the x- and y-gradients simul-
taneously and with equal strengths,
both gradients would cause similar
changes in the MR signal, and we would
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S, = (EN+[8)-(E3+ 1)

Figure 2 Resolving a two-by-two
image using two gradients. To create a
simple two-dimensional image, two
magnetic gradients are required. First,
data can be collected before and after
application of the frequency-encoding
gradient (as shown at top). This pro-
vides two data points, which are insuffi-
cient to distinguish the four spatial
locations. Then, data collection can be
repeated following a phase-encoding
step, providing two new data points
that include the accumulated phase
from the first gradient. This provides
two more data points. By using infor-
mation from all four data points,
reflecting two different phase-encod-
ing steps, one could determine the

G
/ : » Time amount of MR signal generated at each
it oy of the four spatial locations.
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be unable to identify unique locations in
space. Instead, we use sequential combi-
nations of both gradients. As shown at
the top of Figure 2, acquisition of the
MR signal before and after the applica-
tion of an x-gradient (by itself) gives us
two equations, while the introduction of
a y-gradient beforehand would give us

two more. The four equations shown in
the figure are independent, and thus
they could be used to calculate the indi-
vidual intensities at the four spatial loca-
tions of interest. Real MR image forma-
tion is much more complex (e.g., a 64%64
image is made up of 4096 intensity val-
ues) and so different analytic approach-

es are required for identifying what sig-
nal comes from what spatial location.
Nevertheless, the core principle of data
acquisition remains the same: by using
multiple magnetic gradients, applied in
a controlled sequence, we can resolve
the contributions of individual spatial
locations to the total MR signal.

929
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B The sum of all magnetic fields experi-
enced by a spin.

Bloch equation An equation that
describes how the net magnetization
of a spin system changes over time in
the presence of a time-varying mag-
netic field.

transverse plane (see Equation 3.28). Since the Larmor frequency depends on
the strength of the magnetic field, changes in the strength of the magnetic field
will also change the Larmor frequency. Keep in mind that during MR imaging,
a spin experiences only one magnetic field, B, which represents the sum of all
magnetic fields at its location.

In the previous chapter, we described two types of magnetic fields that are
important for the generation of the MR signal: the static (or main) field, B,
and the electromagnetic (or radiofrequency) field, B,. The static magnetic field
aligns the precession axes of the nuclei and generates the net magnetization,
M, and the electromagnetic field excites the nuclei by applying energy that,
when subsequently released, can be measured in detector coils. The combined
effects of these fields on the net magnetization of a spin system are described
by the Bloch equation (see Equation 3.47). We now introduce a third kind of
magnetic field, the spatial gradient G, which alters the precession frequencies
of spins depending on their spatial locations. With the addition of gradient
fields as components of B, we will solve the Bloch equation later to account
for all external magnetic fields, including gradient fields that vary over space.
This will allow us to understand the essence of image formation using the spa-
tial gradients. We repeat the Bloch equation here as Equation 4.1 for ease of
reference:

dM 1 1

T M><B+T] M, -M,) T (Mx+My) (4.1)
The Bloch equation describes the changes in net magnetization as the sum of
three terms. As given by the precession term, the MR signal precesses around
the main axis of the magnetic field at a rate given by the gyromagnetic ratio
and the field strength (see Figure 3.14). The T, term indicates that the longitu-
dinal component of the net magnetization recovers at a rate given by T, (see
Figure 3.21A), and the T, term indicates that the transverse component of the
net magnetization decays at a rate given by T, (see Figure 3.21B). Remember
that in MR, the term longitudinal refers to the axis parallel to the main mag-
netic field, and the term transverse refers to the plane perpendicular to the
main magnetic field.

We next solve the Bloch equation to determine the MR si gnal at each point
in time, M(f). First we break down the Bloch equation, which describes the MR
signal in a three-dimensional vector format, into a simplified scalar form along
each axis. Figure 4.9 illustrates that the net magnetization vector can be thought
of either as a single vector in three dimensions or as a set of three vectors along
each of the three cardinal axes. To represent the Bloch equation in scalar form,
we need to isolate changes along each axis. Note that the change in the net mag-
netization in the x- and y-directions depends on both the precession term and
the T, term. In contrast, the change in magnetization in the z-axis depends only
on the T, term. Considering the axes separately, we can rearrange Equation 4.1;

dM, M.
Bk it (4.2a)
T B

M M

—L =M yB-_Y (4.2b)
dt VR

—_— (42C)
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z Figure 4.9 The net magnetization vector and its axis projections. While
the net magnetization, M, of a sample can be represented as a single vec-

e T D e tor (shown in blue), it can also be described by a set of three vectors: M,
A i ,and M,. By convention, the z-axis is parallel to the main magnetic
field and is known as the longitudinal axis. The x—y plane is perpendicu-
lar to the main magnetic field and is known as the transverse plane.

So, Equations 4.2a and 4.2b describe the changes in magnetization over time,
along the x- and y-directions, as the spins precess about the main axis. The
time constant T, specifies the rate of decay of magnetization in the transverse
plane, but it has no effect on the longitudinal magnetization along the z-axis.
Equation 4.2c describes the change in the longitudinal magnetization over time,
as it recovers at a rate specified by T,.

Longitudinal magnetization (M,)

The longitudinal magnetization depends only on a single equation (4.2c), which
is an ordinary first-order differential equation. Thus, its solution is an expo-
nential recovery function that describes the return of the main magnetization
to the original state. Equation 4.3 replaces dM, /dt with a mathematical equiv-
alent, d(M, — M)/t that represents the change in longitudinal magnetization
from the fully relaxed state, M;:

dM, -~ My) M, - M,

Z
be T (4.3)
Swapping sides for dt and M, - M,, we get:
d{M, - M,
(M, - M,) __dt 44)

M,-M, T,

By integrating both sides of this equation, we obtain Equation 4.5. This equa-
tion states that the natural log of the change in longitudinal magnetization over
time (0 to ') is equal to the change in time divided by the constant T;:

in(M,(6)-My) [y :"TLH (4.5)
1

If we assume that the initial magnetization at time zero is given by M,,, the

solution for M, at a later time point (f) is given by Equation 4.6. This equation

states that the longitudinal magnetization (M,) is equal to the fully relaxed

magnetization, plus the difference between the initial and fully relaxed mag-

netization states, multiplied by an exponential time constant. Note that since
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Figure 4.10 The change in longitudinal magnetization Excitation pulse
over time is known as T, recovery. When fully recovered (A) A 90° My
(A), the longitudinal magnetization is at its maximum \ ________ 4 ________________

value, as shown by the horizontal blue and dotted lines,
and does not change over time. However, following an
excitation pulse that tips the net magnetization into the
transverse plane, there will be zero longitudinal magneti-
zation (B). As time passes following excitation, the longi-
tudinal magnetization recovers toward its maximum
value (C). The time constant T, governs this recovery
process.
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M., is always less than M,, the exponential term describes how much longitu-
dinal magnetization is lost at a given point in time. As t increases, more longi-
tudinal magnetization is recovered and the signal M, approaches the fully

relaxed signal M, T
M, =My+(M,y—M;)-e" ! (4.6)

To illustrate T, recovery, let us consider some extreme values for the initial mag-
netization, M., Consider the situation when the net magnetization is fully
relaxed (Figure 4.10A). Here, M., is equal to M, and the term (M., — M) will
be zero. Once the net magnetization is fully relaxed, it does not change over
time, as indicated by the horizontal line segment. However, after an excitation
pulse is applied (Figure 4.10B), the net magnetization is tipped entirely into the
transverse plane and the net longitudinal magnetization is zero. The subse-
quent recovery of longitudinal magnetization is given by:

M, = My(1 s TR (4.7)

as shown in Figure 4.10C. This equation is important for determining the imag-
ing parameters for T,-contrast images. For example, by choosing when to
acquire an image, we can make that image more or less sensitive to T, differ-
ences between tissues. The details of pulse sequences used for T, contrast gen-
eration are discussed further in Chapter 5.

Solution for transverse magnetization (Mxy)

The solution for the transverse magnetization is complicated by the fact that
we must now consider the plane defined by two axes, x and y. Equations 4.2a
and 4.2b reorganize the Bloch equation, treating the precession term as sepa-
rate one-dimensional projections, along the x- and y-axes, of an object under-
going circular motion, and the T, term as a decay factor (Figure 4.11). Solving
for M, and M,, given an initial magnetization of (-M;, 0), we get the follow-
ing equation pair:

/T,

M, =(M,, cos wt+My0 sinwt)e (4.8a)

i (4.8b)

M, =(-M,,sinwi+M,, coswt)e

Y
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X-projection (real axis) Figure 4.11 The change in transverse
M, = (M cos wt)et/ T2 magnetization over time (f). The magne-
tization in the transverse plane is a vec-
tor defined by its angle and magnitude.
As time passes, its angle follows a circu-
lar motion with constant angular veloc-
ity », while its magnitude decays with
time constant T,. These two components
combine to form the inward spiral path
shown (dashed lines). Shown at the top
and right sides of the spiral path are its
projections onto the x- and y-axes,
respectively. Within each axis, the projec-
tion of the transverse magnetization is a
one-dimensional oscillation, as illus-
trated by the blue and green lines. This
oscillation is shown over time at the bot-
tom of the figure, which illustrates the
decaying MR signal.

7

AL

(smxe AreurSewr) uonoalord-x
/=200 urs Op)

Ty decay

Although these equations appear complex, each describes two components
that are illustrated in Figure 4.11. The parenthetical terms (e.g., M, cos t)
describe one-dimensional projections of circular motion with constant veloc-
ity. The exponential term (e7/T) describes the decay of the circle over time.
Together, they form an inward spiral pattern. As time (f) increases, the trans-
verse magnetization will spiral farther inward, and transverse signal will be lost
at an increasing rate. The constant T, determines the rate at which the spiral
shrinks. The quantity of is the angle of the net magnetization within the trans-
verse plane, and thus determines how fast the spiral turns.

We can combine the x- and y-components of the net magnetization into a
more generalized single quantity, M, , which represents the transverse mag-
netization. The quantity M, is traditionally represented as a complex num-
ber, with one dimension represented using a real component and another rep-
resented using an imaginary component (Equation 4.9).

M,, =M, +iM, (49)

This equation depends on a specific initial condition for (M,, M, f) at (=M, 0).
FoT an arbitrary initial magnitude of the transverse ma gnetization M., o =M,
+iM, g the transverse magnetization can be represented as:
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phase Accumulated change in angle.

M,, =(M,,+ I'Mw)e_” 12 (cos ot — i sin wt) i
M\y r/Tze—zm!

Here we use the term ¢, which is identical to the term (cos @t — i sin wt), to sim-
plify the later derivation of the MR signal equation. The solution shown in Equa-
tion 4.10 states that the transverse magnetization depends on three factors: the
initial magnitude of the transverse magnetization (M, ), a loss of transverse mag-
netization over time due to T, effects (e*w ,), and the accumulated phase, or change
in angle (¢7). The phase term can be dropped during synchronized detection
by having the receiver antenna oscillate at the same frequency as the RF coils, as
seen in the previous chapter’s discussion of rotating frames of reference. Note
that at £ = 0, the exponential terms ¢!, and e both reduce to ¢’ = 1, so that the
transverse magnetization is given by M, ,. But after a long period of time (i.e.,

f = c0), the term ¢™/T, will become exceedmi.,ly small, and thus the transverse MR
signal will be zero. Thus, Equation 4.10 is important for determining the imag-
ing parameters for T,-contrast images. As with T, by choosing when to acquire
an image, we can make that image more or less sensitive to T, differences between
tissues. To obtain contrast that is based on the T, relaxation parameter, an inter-
mediate delay before image acquisition must be introduced, as will be discussed
in the next chapter. The decay of the transverse magnetization, visualized in one
dimension, is illustrated at the bottom of Figure 4.11. The details of pulse
sequences used for T, contrast generation will be discussed further in Chapter 5.

Thought Question

Why does the transverse magnetization vector take a spiraling path
rather than a circular path? How does the amplitude of the measured
MR signal change over time?

After the spin excitation, the magnetic field, B, experienced by spins at a given
spatial location, will depend on the large static field, B, and the smaller gra-
dient field, G. The static field is oriented along the main axis of the scanner, and
the gradient field modulates the strength of the main static field along the x-,
y-, and z-axes. Note that while the magnitude of B varies depending on the
spatial location (x, y, z), its direction is always aligned with the main field.
Therefore, we can describe the magnitude of the total magnetic field, B, expe-
rienced by a spin system at a given spatial location (x, y, z) and time point (1)
as a linear combination of the static field and the gradient fields, which are
direction-specific and vary over time:

B(r) =B, +Gx(r)x+Gy(r)y+Gz(-r)z (4.11)

Knowing that @ = yB, we can substitute the @ term in Equation 4.10 using the
magnitude of the total magnetic field described in Equation 4.11 and get the
following rather intimidating equation. Here we have split the exponential
¢ into separate terms that describe the accumulated phase over time f, caused
by the strength of the static magnetic field (B,) and by the time-varying gradi-
ent fields (G,(7), G,(7), G,(7)) at any given instant 7:

/T, iR, n,j G (B)r+Gy (D) +G, (1)2)de

M, (x,y,z,1) = Mxy{}(xfyfz)e (4.12)

Again, although this equation has many components and seems complex,
it can be broken down into simpler and more understandable parts. It states
that the transverse magnetization for a given spatial location and time point,
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L, (x, y,2t),is governed by four factors: (1) the original magnetization at that
\pa ha] location, M., G( x, 1, z); (2) the signal loss due to T, effects, ¢ T2, (3) the
accumulated phase due to the main magnetic field, e ”’B"‘ and (4) the accu-
mulated phase due to the gradient fields:

F
._f.-fju(cx(r)x+G,J,(z)y+cz(r)z)dr
: 1

Note that this last factor is indicated as an integral over time because gradients
may change over time in some forms of MRL. If a constant gradient along one
direction were used (e.g., G along the x-direction), the accumulated phase over
time t could be more simply described as yG_t.

Let us pause for a moment to review what we have covered so far. We know
that the net magnetization of a sample within a magnetic field can be thought
of as a vector with magnitude and direction. The net magnetization vector can
be broken down into longitudinal (along the static magnetic field) and trans-
verse (perpendicular to the static magnetic field) components. After the net mag-
netization is tipped toward the transverse plane by an excitation pulse, it pre-
cesses around the longitudinal axis at the Larmor frequency. The precession of
the net magnetization in the transverse plane allows for measurement of the MR
signal. We have just learned that the introduction of a spatial magnetic gradient
alters the transverse magnetization over time, because the frequency of preces-
sion depends on the local magnetic field strength. This last point suggests that
spatial gradients may allow encoding of spatial information within the MR sig-
nal. We explore this possibility in the next section.

The MR signal equation

MRI typically does not use separate receiving antennae for individual voxels.
Indeed, such a setup would be impnqqible given that there may be 100,000 or
more voxels within a single imaging volume. Often we use a single antenna
e.g., a volume coil) that covers a large region. The MR signal measured by the

antenna reflects the sum of the transverse magnetizations of all voxels within
the excited sample. We re-emphasize this important point because it underlies
all of the principles of image formation: again, the total signal measured in
VRI combines the changes in net magnetization generated at every excited
voxel. This can be restated in the formal mathematical terms of Equation 4.13,
which expresses the MR signal at a given point in time, S(f), as the spatial sum-
mation of the MR signal from every voxel:

= L Jt L M, (x,y, 2 tdx dy dz (4.13)

Combining Equations 4.12 and 4.13 results in Equation 4.14:

TI{}( (T)x+Gy (D) +G,(r)z)dr

I J j M,,0(x,y,2)e” ~HTagmingty dxdydz (4.14)

Equation 4.14 can be read as stating that the total MR signal measured at any
point in time reflects the sum across all voxels of the net magnetization at time
point zero, multiplied by a decay factor based on T,, with the accumulated
shase given by the combined strength of the static magnetlc field and of the
sradient field at that point in space. This vastly important equation is known
s the MR signal equation, because it reveals the relationship between the
acquired signal, S(t), and the properties of the object being imaged, M(x,y,z).
It is important to recognize that this equation is sufficiently general to describe
the MR signal in virtually all imaging methods.

MR signal The current measured in a
detector coil following excitation and
reception.

MR signal equation A single equation
that describes the MR signal as a func-
tion of the properties of the object
being imaged under a spatially vary-
ing magnetic field.
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slice A single slab of an imaging vol-
ume. The thickness of the slice is
defined by the strength of the gradient
and the bandwidth of the electromag-
netic pulse used to select it.

In practice, the term 7@ is not necessary for calculation of the MR signal,
because modern MRI scanners demodulate the detected signal with the reso-
nance frequency @ That is, they synchronize data acquisition to the resonance
frequency. This demodulation process is analogous to the idea of transform-
ing from laboratory to rotating reference frames, as introduced in Chapter 3.
Imagine that you were watching the precession of the transverse ma gnetiza-
tion from the laboratory (i.e., normal) reference frame. You would see the trans-
verse magnetization spinning around the longitudinal axis at the Larmor fre-
quency. Now imagine that you were rotating around the longitudinal axis at
the same speed as the precessing magnetization. The magnetization vector
would now appear to be still.

The T, decay term, e*/", affects the magnitude of the signal but not its
spatial location. Because it does not contain any spatial information, we can
ignore it for the moment. By removing these two terms, we arrive at a simpler
version of the MR signal equation:

i
=iy | Gy (T)x 4Gy (2)y+G,(T)z)dr
=], |, [, Muotxy,2)e g dxdydz  (415)

This equation illustrates the profound importance of the gradient fields for encod-
ing spatial information within an MR image. In principle, we can collect a single
three-dimensional (3-D) MR image by systematically turning on gradient fields
along the x, i, and z-axes. However, because 3-D imaging sequences present addi-
tional technical challenges and are less tolerant of hardware imperfections, most
forms of imaging relevant to fMRI studies use two-dimensional (2-D) imaging
sequences. For the sake of simplicity, we will next discuss the principles under-
lying common 2-D imaging techniques. We will return to the less common 3-D
imaging techniques at the end of the chapter.

Slice Selection, Spatial Encoding, and Image
Reconstruction

Note that the simplified MR signal equation (see Equation 4.15) is still in 3-D
form, in that the signal contribution from each spatial location depends on all
three spatial gradients. In order to reduce this signal equation to two dimen-
sions, there must be some way to eliminate variation over one spatial dimen-
sion. This can be accomplished by separating the signal-acquisition process into
two steps. First we select a particular slice within the total imaging volume using
a one-dimensional excitation pulse. Then we use a two-dimensional spatial
encoding scheme within the slice to resolve the spatial distribution of the spin
magnetizations. This two-step process forms the basis for most pulse sequences
used in MRI, including those used for nearly all fMRI images. We will discuss
the theoretical bases for these steps in this section, and describe their practical
implementation in the following sections.

Slice selection

The first step in an imaging sequence is slice selection. Remember that the goal
of slice selection is to excite only a particular thin slab of the sample so that the
signal within that slab can be spatially encoded. From Chapter 3 we know that
an electromagnetic field (B,) at the Larmor frequency, when applied in the
transverse plane, tips the longitudinal magnetization. If the duration and
strength of the electromagnetic field are appropriately calibrated, the longitu-
dinal magnetization will rotate exactly into the transverse plane. Such a cali-
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Sigure 4.12 Slice selection. As shown in (A), application of a slice selection gradient (G.)
“hanges the Larmor frequency of spins within the sample. The gradient is chosen so

‘hat spins within the slice of interest (shading) will precess at the desired frequency. Fol-
‘owing the application of the gradient, a subsequent excitation pulse at a given fre-
quency (®) and bandwidth (Aw) is applied. As shown in (B), the excitation frequency
and the frequency bandwidth determine the slice location (Z) and slice thickness (AZ).

orated electromagnetic field is known as an excitation pulse. But if the mag-

netic field were uniform, the applied excitation pulse would affect all of the

<pins within the volume. However, by introducing a static gradient along the

slice selection axis (e.g., G,), we can tune the Larmor frequencies of all spins in

the slice (and only those spins) to match the frequency of the excitation pulse
Figure 4.12).

Ideally, we would like to excite a perfectly rectangular slice along the z-
direction; for example, we might excite all spins from z = +10 mm to z = +15
mm and no spins outside of that range. One might think that this could be
achieved by a rectangular slice selection pulse, as shown in Figure 4.13A. How-
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Figure 4.13 Possible slice selection
pulses. (A) A rectangular slice selection
pulse that consists of a constant applica-
tion of a radiofrequency field at fre-
quency @y, for a time £. The slice selection
profile of this pulse is given by its
Fourier transform (FT) and shown at
right as a sinc function with fundamen-
tal frequency @,. This profile is not ideal
for selection of a rectangular slice. How-
ever, (B) shows the use of a pulse with
time amplitude given by a sinc function.
This pulse gives a rectangular frequency
profile and allows excitation of spins
within a rectangular slice.
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interleaved slice acquisition The col-
lection of data in an alternating order,
to minimize the influence of excitation
pulses on adjacent slices.

ever, a rectangular pulse actually contains a distribution of frequencies shaped
like a sinc function, so it does not excite a rectangular slice. Instead, we must
use a sinc-modulated electromagnetic pulse (Figure 4.13B). Since the Fourier
transform of a sinc function is a rectangular function, a sinc-modulated pulse
has a rectangular frequency response; thus it contains all frequencies within a
band and no frequencies outside that band.

Although a perfectly rectangular slice profile would be optimal, it is dif-
ficult to achieve because of off-resonance excitation. As discussed in the pre-
vious chapter, off-resonance effects may excite spins to some intermediate
stage, as they rotate about the B, field. The primary consequence for MRI is
cross-slice excitation, or the bleeding of excitation from one slice to the next. If
we excite adjacent slices sequentially, each slice will have been pre-excited by
the previous excitation pulse, leading to saturation of the MR signal. To min-
imize this problem, most excitation schemes use interleaved slice acquisition.
For example, if we are to excite ten contiguous slices, we will excite in order
the first, third, fifth, seventh, ninth, second, fourth, sixth, eighth, and tenth
slices. The use of interleaved slice acquisition effectively eliminates excitation
overlap problems.

Slice location and thickness are determined by three factors: the center fre-
quency of the excitation pulse (@), the bandwidth of the excitation field (A ),
and the strength of the gradient field (G.), as illustrated in Figure 4.14. Together,
the center frequency and the gradient field determine the slice location, while
the bandwidth and the gradient field determine the slice thickness. This rela-
tionship can be described by @ + Aw/2 =y G. (z = Az/2). By sliding the center
frequency up and down over successive acquisitions, the MR signal from dif-
ferent slices along the z-axis can be acquired selectively. Likewise, by choosing
a wide or narrow excitation bandwidth, thick or thin slices can be collected,
Note that the use of a stronger gradient, in principle, means that spins at nearby
spatial locations will have greater differences in their Larmor frequencies,
allowing for more selective excitation by a given electromagnetic pulse. Thus,
stronger gradients increase spatial resolution across slices.

LY

Thought Question

Assume that we doubled the strength of the gradient fields in our
scanner. How would the frequency and bandwidth of the excitation
pulse need to change to keep the same slice selection?

In summary, slice selection involves the application of an electromagnetic
pulse that excites spins within one slice but has no effect on spins outside that
slice. The slice chosen by the selection process is defined by its location, orien-
tation, and thickness. For example, let us assume that we want to create an
image of a plane centered at z = z,. For a given location (x, y) within that slice,
the total magnetization summed along the z-direction, M(x,y), for a thickness
Azis given by Equation 4.16. This equation describes the bulk magnetization of
an individual voxel, or x-y coordinate pair, within the slice.

Az

pn+
MO y)= [ 2 Myyo(x,y, 2z (4.16)
B

After slice selection, all signals along the z-direction are integrated, therefore,
the magnetization, M, is dependent only on x and v, but not on z. Thus, by first
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Figure 4.14 Changing slice thickness and location. (A)
The combined use of a linear gradient (solid line) and a
radiofrequency pulse with a center frequency (@) and
bandwidth (Aw) to select a slice location (horizontal axis).
By changing the slope of the gradient (B), the same
radiofrequency pulse can be used to select a slice with a
different location and thickness. (C) By changing the cen-
ter frequency of the excitation pulse to @', the same gradi-
ent can be used to select a different slice location.
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selecting an imaging slice, the simplified MR signal equation (see Equation
4.15) can be further reduced into a 2-D form, as follows:

S(t) = j L M(x,y)e

~iY (G (D4 Gy (Tt

dxdy (4.17)

Two-dimensional spatial encoding
(frequency and phase encoding)

Equation 4.17 states that the total signal recorded from a slice depends on the
net magnetization at every (x, y) location within that slice, and that the phases
of individual voxels in the slice depend on the strengths of the gradient fields
at that location. Although the parts of Equation 4.17 are individually under-

3 i : ; s k-space A notation scheme used to
standable, this equation is difficult to visualize and solve in its present form.

describe MRI data acquisition. The use

To facilitate a better understanding of the relation between the MR signal, 5(1),
and the object to be imaged, M(x,y), MR researchers have adopted a different
notation scheme known as k-space. Recognize that k-space differs in an impor-

of k-space provides mathematical and
conceptual advantages for describing
the acquired MR signal in image form.
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k-space trajectory A path through k-
space. Different pulse sequences adopt
different k-space trajectories.

image reconstruction The process by
which the raw MR signal, as acquired
in k-space form, is converted into spa-
tially informative images.

G, (amplitude)

ky (area)

> Time

Figure 4.15 The relationship between the gradient waveform and k-space. The effect
of a gradient, G,, on a given voxel is expressed as the amplitude of the gradient sig-
nal over time. The change in k-space over time is given by the blue area of the graph.

tant way from the normal space, in which the object resides. Consider the terms
k, and k, in Equation 4.18. Each equation represents the time integral of the
appropriate gradient multiplied by the gyromagnetic ratio:

st
k)= | G(ayi (4.18a)

et 4.18b
K B=5 [ G, (0t (4.18b)

These equations state that changes in k-space over time, or k-space trajectories,
are given by the time integrals of the gradient waveforms. In other words, the
k-space trajectories are simply the areas under the gradient waveforms, as illus-
trated in Figure 4.15 for a uniform gradient change over a time interval (t). By
substituting these terms into Equation 4.17, we can restate the MR signal equa-
tion using k-space coordinates:

—i2mk )y —i2mk, (Y
5(f)=L J'y M(x, y)e ~ 2O "5 gy (4.19)

Equation 4.19 is remarkable because it indicates that k-space and image space
have a straightforward relationship: they are 2-D Fourier transforms of each
other. Just as any signal that changes over time, no matter how complex (e.g.,
a musical composition), can be constructed from a series of simpler frequen-
cies, any image can be constructed from a series of simpler components in what
is called the spatial-frequency domain (Figure 4.16). The Fourier transform is one
mathematical tool for this construction process. The mathematics of the Fourier
transform are well established, so we can take advantage of those mathemat-
ics to decode the k-space representation of the MR signal, S(t), into the magne-
tization at each spatial location, M(x,y), creating a spatially informative image.
Equation 4.19 suggests that an inverse Fourier transform can convert k-space
data into an image, a process known as image reconstruction. Conversely, a for-
ward Fourier transform can convert image-space data into k-space data.

To collect the k-space data needed for image formation, we apply addi-
tional magnetic gradients known as frequency- and phase-encoding gradients.
These gradients influence the individual spin phases for different voxels, as
illustrated in Figure 4.17, which in turn alters the total MR signal that is
recorded from the sample. As we learned earlier in this chapter, if we reorgan-
ize signal 5(f) to S(k,(), k(1)) as indicated in Equation 4.19, then the MR sig-
nal can be represented by a 2-D function in a coordinate system where k_and
k, are the two axes. This coordinate system defines k-space and has units in
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Q) Figure 4.16 Constructing a complex waveform or image from simpler components. Any
dataset, no matter how complex, can be constructed from simpler components. Shown in (A) are
three sine waves, each with a different frequency. When combined, they form the waveform at
right. By combining more and more sine waves of different frequencies and phases, very com-
By plex waveforms can be created, such as the sound waves produced by music. The same princi-
By, ¥ ple holds for two-dimensional data (B), except that here the components are gratings whose pat-
U - terns are determined by spatial frequencies (i.e., distances between bars), phases, and angles. By
) NGamhatis combining a very large number of these gratings, complex images can be created, such as those
k-space used in MRIL Shown in (C) is the k-space plot of the summed image; the individual gratings
shown in (B) each correspond to one of these three points (B, B,, and B,, respectively) in k-space.
G, turned on G, turned on
A Y X v o oy v ¥ ' |
»} h\ X O 4 g ’g + * * f ' + + + + + Figure 4.17 A schematic illustration of
N N N AR ¥ ¥ ¥ ¥ ¥ ¥ ¥ V¥ the effgcts oéme;lgnetic fie}:d gracllxient}:: on
; R - 4 4 4 | spinphase, Each arrow shows the phase
+ b W R W e o[;spimata givenlocal:ionmspacgfol-
AR R~ x Yy “ 4 4 &4 4 & & 44 owing the application of either a x-gradi-
A X X - < &« », § y - - <« =« < < < < < | ent(A)ory-gradient (B). For example, a
A A X w &y Yy - - W . oW W W - % ?ttongcllzlrmz)ignetllcdﬁeld from left tohrighth
' x-gradient) would cause spins at the right
i ‘: : P i WU W NG MEEEE TR side of image space to precess faster than
;l \ X ® -« yy | A A A A A R A R those on the left side. Thus, the spins on
bW R e Wy i AR R the right would accumulate phase (i.e.,
A X X <« oy Yy L A ! angle of their spin axis, relative to the
main magnetic field) over time.
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(4)

(B) s

Y

Y

Slice Phase
selection encoding

filling k-space The process of collecting
samples from throughout k-space in
order to collect data sufficient for
image formation.

gradient-echo (GRE) imaging One of
the two primary types of pulse
sequences used in MRI; it uses gradi-
ents to generate the MR signal
changes that are measured at data
acquisition.

Y Y Y VY VYVYY Jr

Frequency
encoding

Figure 4.18 A typical two-dimensional gradient-echo pulse sequence. Shown in (A) are
lines representing the activities of the radiofrequency field (RF) and the three spatial
gradients. The pulse sequence begins with a combined slice selection gradient (G,) and
excitation pulse. The G, gradient is used for selecting one line of k-space following each
excitation pulse, while the G, gradient is turned on during data acquisition (DAQ). The
sequence then repeats with a G, of different strength for each of the 1 lines of the image.
(B) Shown here is the pattern that this sequence traverses in k-space. Each line of k-space
is acquired following a separate excitation, then the application of the G, at a particular
strength (causing an upward or downward motion in k-space), then the’ application of
the G, at a constant strength and duration (causing a rightward motion in k-space). Fol-
lowing n excitations, all of k-space is filled and image acquisition is complete.

spatial frequency (1/distance). Because a complete sample of the k-space is
usually required to construct an image, collecting the MR signal is often referred
to as filling k-space.

Remember from Figure 4.15 that k, and k, are actually time integrals of the
gradient waveform. Thus, by mampulatmg the gradient waveforms, we can
control the sampling path within k-space during MR signal acquisition. For
example, by altering the strength of different gradients over time, we could
first collect data from the upper-left point in k-space, and then move right-
ward, and then downward, and then leftward, etc., tracing a snakelike path
through the image. While any path that covers all of k-space can be used to
collect the k-space data, in practice, regular paths that include straight lines or
smooth curves are preferred.

In typical anatomical imaging sequences, like the gradient-echo sequence
shown in Figure 4.18A, k-space is filled one line at a time, following a succes-
sion of individual excitation pulses. During each excitation the combination of
the electromagnetic pulse and the G, gradient selects the desired slice. Then,
one gradient (e.g., G, ) is turned on before the data acquisition period. This accu-
mulates a certain amount of phase offset before the activation of the other (e.g.,
G,) gradient is applied. This results in the movement of the effective location of
data acquisition in k-space along the y-direction, as shown by the blue arrow in
Figure 4.18B. In this example, G, can be considered to be the phase-encoding gra-
dient, as it was used to generate a certain amount of phase before the acquisi-
tion. During data acquisition, the G, gradient is turned on, changing the fre-
quency of the spins during signal readout, so by convention G, is named the
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frequency-encoding gradient. Note, however, that both gradients act similarly
in driving the position of data acquisition within k-space, because k, and k, both
reflect the time integrals of the gradient waveforms.

Sampling of k-space occurs in a discrete fashion. Along the k, dhection,
each line represents a separate amplitude of the G, gradient (shown as 1.
steps in Figure 4.18B). While the trajectory along the k, direction is C(mtmu—
ous, the MR signal is sampled digitally with a specific interval, so that each
row consists of a number of discrete data points.

Relationship between image space and k-space

To illustrate the relationship between image space and k-space, Figure 4.19
shows some sample images and the resulting Fourier transforms. Think of each
pair as showing an object and the acquired MR signal in its raw form within k-
space. An image with a single circle at its center corresponds to a pattern of
alternating light and dark circles throughout k-space (Figure 4.19A). (This pat-
tern is equivalent to a 2-D Bessel sinc function.) Note that the center of k-space
represents the point in time when the signals from all voxels are at the same
phase, so it represents the total transverse magnetization within that slice. Thus,
the center always has the highest signal of any point in k-space.

We can add a second circle to the image to illustrate
another concept, that k-space reflects the spatial frequency

spatial frequency The frequency with
which some pattern occurs over space.

of the object(s) in the image space. Spatial frequency Image space k-space

defines how often some pattern occurs in space, just as
temporal frequency (e.g., the pitch of a piano note)
defines how often something occurs in time (e.g., the
vibration rate of one string of that piano). Shown in Fig-
ure 4.19B are two circles, one offset from the center. If we
trace a line from the top left to the bottom right of the
image, it will encounter two circles separated by a dis-
tance between their centers. The k-space data will thus
have a spatial-frequency component along that line, with
the frequency equal to the inverse of that distance. This
is visible as a grating running from top left to bottom
right in the k-space image, on top of the concentric pat-
tern that results from the shapes of the circles.

(©)

Figure 4.19 Images and their Fourier transforms. (A) A single
circle at the center of the image space and the representation of
the circle in k-space. Note that the k-space representation follows
1 sinc function, with greatest intensity at the center and intensity

':1ands of decreasing amplitude toward the edges of the k-space.

Addition of a second circle to the image space (B) introduces a

srating pattern to the k-space. An image of the brain (C) contains

much more spatial information, and thus its representation in k-

space is similarly more complex.
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Thought Question

How would the k-space data in Figure 4.19B change if the lower
circle were moved to the bottom-left quadrant of the image?
How would the k-space data change if it were moved farther toward

Image space

k-space

Figure 4.20 How the different parts of k-space contribute to
image space. Images such as this photograph of Dr. Seiji
Ogawa can be Converted using a Fourier transform into k-
space data (A). Different parts of the k-space data correspond
to different spatial-frequency components of the image. The
center of k-space (B) provides low-spatial-frequency informa-
tion, retaining most of the signal but not fine details. The
periphery of k-space (C) provides high-spatial-frequency infor-
mation, and thus more image detail, but it contributes rela-
tively little signal to the image.

the bottom-right corner?

Any image, no matter how complex, can be repre-
sented as an assembly of spatial-frequency components.
The k-space representation of an anatomical image is
shown in Figure 4.19C. The k-space image is brightest in
the center and darkest near the edges. This illustrates that
low-spatial-frequency data (i.e., grating patterns with
thick lines) from near the center of k-space are most
important for determining the signal-to-noise ratio of the
image. In comparison, high-spatial-frequency data col-
lected at the periphery of k-space (i.e., grating patterns
with thin lines) help to increase the spatial resolution of
the image. Figure 4.20 illustrates this important distinc-
tion between the low-spatial-frequency and high-spatial-
frequency regions of k-space. If we take from a normal
photograph (Figure 4.20A) only the low-spatial-fre-
quency region of its k-space data, the image would have
most of the signal but would lack good spatial resolution
(Figure 4.20B). But if we take only the high-spatial-fre-
quency region of its k-space data, the image would have
alow signal level, and would lack overall brightness dif-
ferences between areas of the image, but the spatial detail
would be preserved (Figure 4.20C).

Contrary to intuition, there is not a one-to-one rela-
tionship between points in k-space and voxels in image
space. For an illustration of what each point in k-space
represents, consider Figure 4.21. The center plot shows
the k-space data (or raw MR signal). Each point in the k-
space data is acquired at a different point in time and
has contributions from all voxels within the slice, We
have highlighted four sample k-space points, each show-
ing the net magnetization vectors within each voxel (in
image space) at the moment in time when that point in
k-space was acquired. For the point at the center of k-
space (Figure 4.21A), all of the magnetization vectors
are at the same phase, and thus the total signal is at its
maximum. At other k-space points (Figure 4.21B-D), the
magnetization vectors differ across voxels, and the
intensity of the k-space point represents the sum of those
vectors.

Converting from k-space to image space

After k-space is filled, a 2-D inverse Fourier transform,
is necessary for conversion of the raw data from k-space
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~gure 4.21 Contributions of different image locations to the raw k-space data. Each
{ata point in k-space (shown in yellow) consists of the summation of the MR signal
-om all voxels in the image space, based on the x- and y-gradients that have been
oplied so far. For four k-space points (A-D), the side plots indicate the relative
~hases of the magnetization vectors for sample voxels in image space. For the center
¢ k-space, the phases for all voxels in the respective image space are identical (A),
‘erefore leading to the maximum signal in k-space, For a data point where £, is at
re maximum and k, is at zero (B), the precession frequency of the magnetization
ectors changes rapidly along the y-direction but remain the same along the x-direc-
on. Thus, there will be an accumulated phase differential along the y-direction. For
data point where both k, and k, are large (C), the relative phases change rapidly
Jong the combined diagonal direction. And finally, where k, is zero and k, is at its
saximum (D), the relative phases change rapidly only along the x-direction.

‘0 image space, M(x,y). It is important to recognize that the sampling param-
~ters in these two spaces are inversely proportional to each other. In image
-pace, the basic sampling unit is distance, while in k-space, the basic sampling
unit is spatial frequency (1/distance). Qualitatively speaking, this means that
: wider range of coverage in k-space results in higher spatial resolution in
‘mage space (i.e., smaller voxels). This concept can be appreciated by the pho-
rographs shown in Figure 4.20, which demonstrate that the periphery of k-
<pace contributes to the fine details of the image (i.e., the spatial resolution).
Conversely, finer sampling in k-space results in a greater extent of coverage,
or a larger field of view, in the image domain. This relationship is illustrated
craphically in Figure 4.22 and quantitatively in Equation 4.20a,b. Here, field
“fview (FOV) is defined as the total distance along a dimension of image space
L.e., how large the image is). Typical fields of view in fMRI experiments are
about 20 to 24 cm.

field of view (FOV) The total extent of
an image along a spatial dimension.




116 Chapter 4

(A)

Figure 4.22 Effects of sampling in k-
space on the resulting images. The field
of view and resolution have an inverse
relationship when applied to image
space and k-space. (A) A schematic rep-
resentation of densely sampled k-space
with a wide field of view, resulting in the
high-resolution image (D). (B) If only the
center of k-space is sampled, albeit with
the same sampling density, then the
resulting image (E) has the same field of
view but lower spatial resolution. (C)
Conversely, if k-space is sampled across
a wide field of view but with a limited
sampling rate, the resulting image will
have a small field of view but high reso-
lution (F).

(B) ©

FOV, = ﬁ =sampling rate along k, = senhoc (4.20a)
b Y (G, At)
2"
1 , 3 1
FOV, =Ec—:samp]mg rate along Ay :y—-—— (4.20b)
v 5 (AG,t)
E o

These equations can be reorganized (Equation 4.21a,b) to give the voxel size,
which is just the FOV divided by the number of samples. Note that the quan-
tities 2k, .., and 2k . refer to the total extent of k-space along each of the car-
dinal directions. Tf)‘max is large, then the voxel size will be small.

BV 0B i s
M.‘( MXA f{x Zk:l-n'lax
N, 1 L (4.21b)

M, Mk, 2k

1y ymax
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In summary, the raw MR signal, S(1), is a one-dimensional string of data
points through k-space that has been sampled at a very high rate. This signal
can be broken into two dimensions, according to k, and k,, to facilitate a 2-D
inverse Fourier transform. Decreasing the separation between adjacent data
points in k-space increases the FOV in image space. Likewise, increasing the
extent of k-space decreases the voxel size in image space. Note also that if we
want to collect data from N x N voxels in our image, then we need an equal
number of k-space data points (N X N).

3-D Imaging

While 2-D imaging methods are common for most applications, not all MR
imaging techniques are based on 2-D principles. Pulse sequences that collect
t-space data in three dimensions are often used, especially for high-resolution
anatomical images. Compared with 2-D imaging, 3-D sequences provide the
primary advantage of a high signal-to-noise ratio, due to the fact that the 3-D
volume can be larger than a single slice, and therefore, more excited spins can
contribute to the MR signal. The principles of 3-D imaging can be extrapolated
from those of 2-D imaging, so in theory, any 2-D imaging sequence can be con-
verted to a 3-D sequence. Since slice selection is unnecessary, the traditional
slice excitation step is replaced by a volume excitation step that uses a very
small z-gradient to select a thick slab. To resolve spatial information along the
--direction, another phase-encoding gradient is presented along that dimension
during the data acquisition phase. Therefore, within a typical 3-D pulse
sequence, there are two phase-encoding gradients and one frequency-encod-
ing gradient. The concept of k-space can also be expanded to three dimensions
by adding k,, defined by the time integral of the G, gradient. To reconstruct
the 3-D image, an inverse Fourier transform in three dimensions is executed.
Unfortunately, the advantages of 3-D sequences are accompanied by several
disadvantages. For example, phase encoding is usually more vulnerable to field
nhomogeneities and motion artifacts than frequency encoding. Because 3-D imag-
ng methods have two phase-encoding dimensions, they are more vulnerable to
these artifacts. Also, more time is required to fill k-space when an entire volume
is excited than when only a single slice is excited. Thus, movement of the head
atany point within the acquisition window will cause distortions throughout the
entire imaging volume. In fMRI studies, 3-D imaging is typically restricted to
anatomical scans, while most fMRI pulse sequences create 2-D images.

Potential Problems in lmage Formation

The goal of any image formation method is to achieve a true representation of
the imaged object. Of course, in an ideal scanning environment with a per-
fectly uniform main magnetic field, perfectly linear gradient fields, an
absolutely square excitation profile, and optimized image acquisition software,
there would be no problems! Under such perfect conditions, the acquired image
would exactly match the scanned object in every way. It would have the same
size and shape, with local intensities dependent on the appropriate proton den-
sities and relaxation characteristics. However, as anyone with substantial MRI
experience will attest, the images acquired under normal laboratory condi-
tions are not always faithful to the original objects. We next discuss some of the
typical problems encountered in forming MR images.

17
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The first problem to consider is inhomogeneity of the static magnetic field,
which means that the actual strength of the field at one or more spatial loca-
tions is not the same as the theoretically desired value. Note that inhomogene-
ity in the static magnetic field becomes increasingly problematic at higher field
strengths, because it becomes more difficult to adequately shim the field to
correct for local distortions. The imperfection in the static field can be mathe-
matically represented by a difference quantity, AB, representing the increased
or decreased field strength at a given location. Equation 4.22 is a modified ver-
sion of the MR signal equation that contains the new term AB;:

welky () +k,},(f]Jr+:_\BDf

S(h) = J j m(x, y)e = dxdy (4.22)

We usually do not know the exact nature of static field inhomogeneities, but
if present they will introduce artifacts in images, following conventional inverse
Fourier transformations. In practice, AB, can lead to two distinct types of arti-
facts: geometric distortions and variations in signal intensity. We can think of
these artifact types, taken roughly, as macroscopic and microscopic effects.

Large-scale inhomogeneities cause genmetric distortions due to the spatial
shifting of voxels. Because the frequency of spins depends upon the magnetic
field strength, magnetic field inhomogeneities will lead to changes in spin fre-
quencies. Remember that the position of a voxel is encoded by its spin fre-
quency. Thus, a voxel with the incorrect spin frequency will be displaced to an
incorrect spatial location. Small-scale inhomogeneities cause spins within a
voxel to lose coherence due to T,* effects. This reduces the total magnetization
available within a voxel and thus reduces its signal intensity. These two effects
may be present within the same image (Figure 4.23).

A second problem results from nonlinearities in the gradient fields. Because
the spatial gradients control the k-space trajectories, we use k-space to evalu-
ate their artifacts. We use for this example a typical gradient-echo pulse

(A) (B)
Original image Distorted image

Figure 4.23 Spatial and intensity distortions due to magnetic field inhomogeneities.
Under a homogeneous magnetic field, the image of a circular phantom (e.g., a liquid-
filled ball) is itself circular and of relatively similar intensity throughout (A) Local
magnetic field inhomogeneities cause two types of distortions, geometric distortions
and signal losses, both of which are visible on the distorted image (B).
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Original image k-space trajectory Squeezed image

igure 4.24 Image distortions caused by gradient problems. Each row shows the
deal image (left), the problem with acquisition in k-space, and the resulting distorted
mage (right). (A) Problems with the x-gradient will affect the length of the trajectory
long the x-dimension in k-space, resulting in an image that appears compressed. (B)
‘roblems with the y-gradient will affect the path taken through k-space over time,
esulting in a skewed image. (C) Problems with the z-gradient will affect the match
of excitation pulse and slice selection gradient, here resulting in a thinner slice and
reduced signal intensity.

sequence, a type that will be discussed more extensively in the following chap-
ter. First, if the x-gradient G, is off by a small amount, as shown in Figure 4.24A,
the resulting k-space trajectoneq will have an error along the k, direction. Sec-
nd, if the y-gradient G, is off, the k-space trajectories will be skewed along

the k, direction (Figure 4 24B). Note that this skew affects both the onset of
each hne in k-space as well as the path taken through k-space. The magnitude
of this skew depends on the time integral of the gradient amount. Third, if the

--gradient G, is off, the slope of the excitation gradient will be altered. Alter-
ing the slope of the slice-selection gradient can cause a mismatch between the
sradient-induced changes in spin frequency and the excitation pulse. How-
ever, because the k-space trajectory in the x—y plane would not change, the




120 Chapter 4

REFER TO THE

fMRI

COMPANION WEBSITE AT

www.sinauer.com/fmri2e
for study questions and Web links.

shape of the object would not be distorted. Thus, problems with the G, gradi-
ent can lead to changes in slice thickness and signal intensity (Figure 4.24C).

Summary

The net magnetization of a spin system, as described by the Bloch equation,
can be broken down into separate spatial components along the x-, y-, and z-
axes. By convention, the longitudinal magnetization is defined as M, and the
transverse magnetization is defined as M,,. The recovery of the longitudinal
magnetization following excitation is governed by the time constant T,
while the decay of the transverse magnetization following excitation is gov-
erned by the time constant T,. The total measured MR signal is the combina-
tion of the transverse magnetization from all voxels in the sample and can
be described using a single equation. The use of spatial gradients is neces-
sary for the measurement of spatial properties of a sample, in essence allow-
ing MR to become MRI. The simultaneous application of a G, gradient and
an excitation pulse allows selection of a defined slice within the imaging vol-
ume. The use of two additional gradients within the slice allows unique
encoding of spatial locations. Image acquisition can be considered using the
concept of k-space, which reflects the Fourier transform of image space. Dif-
ferent pulse sequences sample k-space differently, and the inverse relation-
ship between k-space sampling and image space sampling is important to
understand. Inhomogeneities in the net magnetic field can cause systematic
artifacts in the reconstructed images, in the form of geometric distortions
and/or signal loss.
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