"

11 Biotechnology

By the end of this section, you will be able to:

  • Describe gel electrophoresis
  • Explain molecular and reproductive cloning
  • Describe biotechnology uses in medicine and agriculture
  • Explain how the polymerase chain reaction works to make copies of DNA segments
  • Explain how recombinant DNA is assembled and used to modify genomes
  • Explain how the CRISPR-Cas9 system differs from other forms of gene editing

Lecture Video: Genetic engineering, recombinant DNA, and gene therapy.

 

Biotechnology is the use of biological agents for technological advancement. Biotechnology was used for breeding livestock and crops long before people understood the scientific basis of these techniques. Since the discovery of the structure of DNA in 1953, the biotechnology field has grown rapidly through both academic research and private companies. The primary applications of this technology are in medicine (vaccine and antibiotic production) and agriculture (crop genetic modification in order to increase yields). Biotechnology also has many industrial applications, such as fermentation, treating oil spills, and producing biofuels (Figure 1).

The right side of this image is an old black and white photo of a mailbox plastered with an advertisement that says, Penicillin cures gonorrhea in four hours. See your doctor today. The left side of the image shows a petri dish streaked with bacteria. Bacteria grow everywhere on the plate except where discs containing antibiotic have been placed. These areas are completely devoid of bacterial growth
Figure 1: Fungi, bacteria, and other organisms that have antimicrobial properties produce antibiotics. The first antibiotic discovered was penicillin. Pharmaceutical companies now commercially produce and test antibiotics for their potential to inhibit bacterial growth. (credit “advertisement”: modification of work by NIH; credit “test plate”: modification of work by Don Stalons/CDC; scale-bar data from Matt Russell)

Basic Techniques to Manipulate Genetic Material (DNA and RNA)

To understand the basic techniques used to work with nucleic acids, remember that nucleic acids are macromolecules made of nucleotides (a sugar, a phosphate, and a nitrogenous base) linked by phosphodiester bonds. The phosphate groups on these molecules each have a net negative charge. An entire set of DNA molecules in the nucleus is called the genome. DNA has two complementary strands linked by hydrogen bonds between the paired bases. Exposure to high temperatures (DNA denaturation) can separate the two strands and cooling can reanneal them. The DNA polymerase enzyme can replicate the DNA. Unlike DNA, which is located in the eukaryotic cells’ nucleus, RNA molecules leave the nucleus. The most common type of RNA that researchers analyze is the messenger RNA (mRNA) because it represents the protein-coding genes that are actively expressed. However, RNA molecules present some other challenges to analysis, as they are often less stable than DNA.

DNA and RNA Extraction

To study or manipulate nucleic acids, one must first isolate or extract the DNA or RNA from the cells. Researchers use various techniques to extract different types of DNA (Figure 2). Most nucleic acid extraction techniques involve steps to break open the cell and use enzymatic reactions to destroy all macromolecules that are not desired (such as unwanted molecule degradation and separation from the DNA sample). A lysis buffer (a solution which is mostly a detergent) breaks cells. Note that lysis means “to split”. These enzymes break apart lipid molecules in the cell membranes and nuclear membranes. Enzymes such as proteases that break down proteins inactivate macromolecules, and ribonucleases (RNAses) that break down RNA. Using alcohol precipitates the DNA. Human genomic DNA is usually visible as a gelatinous, white mass. One can store the DNA samples frozen at –80°C for several years.

This illustration shows the four main steps of DNA extraction. In the first step, cells in a test tube are lysed using a detergent that disrupts the plasma membrane. In the second step, cell contents are treated with protease to destroy protein, and RNAase to destroy R N A. The resulting slurry is centrifuged to pellet the cell debris. The supernatant, or liquid, containing the D N A is then transferred to a clean test tube. The D N A is precipitated with ethanol. It forms viscous, mucous-like strands that can be spooled on a glass rod
Figure 2: This diagram shows the basic method of DNA extraction.

Scientists perform RNA analysis to study gene expression patterns in cells. RNA is naturally very unstable because RNAses are commonly present in nature and very difficult to inactivate. Similar to DNA, RNA extraction involves using various buffers and enzymes to inactivate macromolecules and preserve the RNA.

Gel Electrophoresis

Because nucleic acids are negatively charged ions at neutral or basic pH in an aqueous environment, an electric field can mobilize them. Gel electrophoresis is a technique that scientists use to separate molecules on the basis of size, using this charge. One can separate the nucleic acids as whole chromosomes or fragments. The nucleic acids load into a slot near the semisolid, porous gel matrix’s negative electrode, and pulled toward the positive electrode at the gel’s opposite end. Smaller molecules move through the gel’s pores faster than larger molecules. This difference in the migration rate separates the fragments on the basis of size. There are molecular weight standard samples that researchers can run alongside the molecules to provide a size comparison. We can observe nucleic acids in a gel matrix using various fluorescent or colored dyes. Distinct nucleic acid fragments appear as bands at specific distances from the gel’s top (the negative electrode end) on the basis of their size (Figure 3). A mixture of genomic DNA fragments of varying sizes appear as a long smear; whereas, uncut genomic DNA is usually too large to run through the gel and forms a single large band at the gel’s top.

Photo shows an agarose gel illuminated under U V light. The gel contains nine lanes from left to right. Each lane was loaded with a sample containing D N A fragments of differing size that separated as they travelled through the gel from top to bottom. The D N A appears as thin, white bands on a black background. Lanes one and nine contain many bands from a D N A standard. These bands are closely spaced toward the top, and spaced farther apart further down the gel. Lanes two through eight contain one or two bands each. Some of these bands are identical in size and run the same distance into the gel. Others run a slightly different distance, indicating a small difference in size. Image b shows a researcher working at a machine where she is observing D N A under ultraviolet light.
Figure 3: a) Shown are DNA fragments from seven samples run on a gel, stained with a fluorescent dye, and viewed under UV light; and b) a researcher from International Rice Research Institute, reviewing DNA profiles using UV light. (credit: a: James Jacob, Tompkins Cortland Community College b: International Rice Research Institute)

Nucleic Acid Fragment Amplification by Polymerase Chain Reaction

Although genomic DNA is visible to the naked eye when it is extracted in bulk, DNA analysis often requires focusing on one or more specific genome regions. Polymerase chain reaction (PCR) is a technique that scientists use to amplify specific DNA regions for further analysis (Figure 4). Researchers use PCR for many purposes in laboratories, such as cloning gene fragments to analyze genetic diseases, identifying contaminant foreign DNA in a sample, and amplifying DNA for sequencing. More practical applications include determining paternity and detecting genetic diseases.

Illustration shows the amplification of a D N A sequence by the polymerase chain reaction. P C R consists of three steps; denaturation, annealing, and D N A synthesis; that occur at high, low, and intermediate temperatures. In step 1, the denaturation step, the sample is heated to a high temperature so the D N A strands separate. In step 2, annealing, the sample is cooled so two primers can anneal to the two strands of D N A. The primers are spaced such that the sequence of interest between them will be amplified. In step 3, D N A synthesis, the sample is warmed to the optimal temperature for Taq polymerase, which synthesizes the complementary strand from the primer to the 3 prime end of the molecule. This cycle is repeated again and again. Each time, the newly synthesized strands serve as templates so that the amount of D N A doubles with each cycle. As the cycles continue, more and more strands are the size of the distance between the two primers; in the end, the vast majority of strands are this size.
Figure 4: Scientists use polymerase chain reaction, or PCR, to amplify a specific DNA sequence. Primers—short pieces of DNA complementary to each end of the target sequence combine with genomic DNA, Taq polymerase, and deoxynucleotides. Taq polymerase is a DNA polymerase isolated from the thermostable bacterium Thermus aquaticus that is able to withstand the high temperatures that scientists use in PCR. Thermus aquaticus grows in the Lower Geyser Basin of Yellowstone National Park. Reverse transcriptase PCR (RT-PCR) is similar to PCR, but cDNA is made from an RNA template before PCR begins.

DNA fragments can also be amplified from an RNA template in a process called reverse transcriptase PCR (RT-PCR). The first step is to recreate the original DNA template strand (called cDNA) by applying DNA nucleotides to the mRNA. This process is called reverse transcription. This requires the presence of an enzyme called reverse transcriptase. After the cDNA is made, regular PCR can be used to amplify it.

LINK TO LEARNING


Deepen your understanding of the polymerase chain reaction by viewing this video.

Molecular Cloning

In general, the word “cloning” means the creation of a perfect replica; however, in biology, the re-creation of a whole organism is referred to as “reproductive cloning.” Long before attempts were made to clone an entire organism, researchers learned how to reproduce desired regions or fragments of the genome, a process that is referred to as molecular cloning.

Cloning small genome fragments allows researchers to manipulate and study specific genes (and their protein products), or noncoding regions in isolation. A plasmid, or vector, is a small circular DNA molecule that replicates independently of the chromosomal DNA. In cloning, scientists can use the plasmid molecules to provide a “folder” in which to insert a desired DNA fragment. Plasmids are usually introduced into a bacterial host for proliferation. In the bacterial context, scientists call the DNA fragment from the human genome (or the genome of another studied organism) foreign DNA, or a transgene, to differentiate it from the bacterium’s DNA, or the host DNA.

Plasmids occur naturally in bacterial populations (such as Escherichia coli) and have genes that can contribute favorable traits to the organism, such as antibiotic resistance (the ability to be unaffected by antibiotics). Scientists have repurposed and engineered plasmids as vectors for molecular cloning and the large-scale production of important reagents, such as insulin and human growth hormone. An important feature of plasmid vectors is the ease with which scientists can introduce a foreign DNA fragment via the multiple cloning site (MCS). The MCS is a short DNA sequence containing multiple sites that different commonly available restriction endonucleases can cut. Restriction endonucleases recognize specific DNA sequences and cut them in a predictable manner. They are naturally produced by bacteria as a defense mechanism against foreign DNA. Many restriction endonucleases make staggered cuts in the two DNA strands, such that the cut ends have a 2- or 4-base single-stranded overhang. Because these overhangs are capable of annealing with complementary overhangs, we call them “sticky ends.” Adding the enzyme DNA ligase permanently joins the DNA fragments via phosphodiester bonds. In this way, scientists can splice any DNA fragment generated by restriction endonuclease cleavage between the plasmid DNA’s two ends that has been cut with the same restriction endonuclease (Figure 5).

Recombinant DNA Molecules

Plasmids with foreign DNA inserted into them are called recombinant DNA molecules because they are created artificially and do not occur in nature. They are also called chimeric molecules because the origin of different molecule parts of the molecules can be traced back to different species of biological organisms or even to chemical synthesis. We call proteins that are expressed from recombinant DNA molecules recombinant proteins. Not all recombinant plasmids are capable of expressing genes. The recombinant DNA may need to move into a different vector (or host) that is better designed for gene expression. Scientists may also engineer plasmids to express proteins only when certain environmental factors stimulate them, so they can control the recombinant proteins’ expression.

VISUAL CONNECTION


This figure illustrates the steps in molecular cloning into a plasmid called a cloning vector. The vector has a lac Z gene, which is necessary for metabolizing lactose, and a gene for ampicillin resistance. Within the lac Z gene are restriction sites, sequences of D N A cut by a particular restriction enzyme. The D N A to be cloned and the plasmid are both cut by the same restriction enzyme. The restriction enzyme staggers the cuts on the two strands of D N A, such that each strand has an overhanging single-stranded bit of D N A. On one strand, the sequence of the overhang is G A T C, and on the other, the sequence is C T A G. These two sequences are complementary, and allow the fragment of foreign D N A to anneal with the plasmid. An enzyme called ligase joins the two pieces together. The ligated plasmid is then transformed into a bacterial strain that lacks the lac Z gene and is sensitive to the antibiotic ampicillin. The bacteria are plated on media containing ampicillin, so that only bacteria that have taking up the plasmid; which has an ampicillin resistance gene; will grow. The media also contains X gal, a chemical that is metabolized in the same way as lactose. Plasmids lacking the insert are able to metabolize X gal, releasing a dye from X gal that turns the colony blue. Plasmids with the insert have a disrupted lac Z gene and produce white colonies. Thus, colonies containing the cloned D N A can be selected on the basis of color.
Figure 5: This diagram shows the steps involved in molecular cloning.

You are working in a molecular biology lab and, unbeknownst to you, your lab partner left the foreign genomic DNA that you are planning to clone on the lab bench overnight instead of storing it in the freezer. As a result, it was degraded by nucleases, but still used in the experiment. The plasmid, on the other hand, is fine. What results would you expect from your molecular cloning experiment?

  1. There will be no colonies on the bacterial plate.
  2. There will be blue colonies only.
  3. There will be blue and white colonies.
  4. There will be white colonies only.


Answer:
You’d expect the experiment would result in blue colonies only. (b.)

LINK TO LEARNING


View an animation of recombination in cloning from the DNA Learning Center.

CRISPR Technology

CRISPR technology has transformed the field of genetic engineering by providing a precise, efficient, and versatile method for editing genomes. At the heart of this innovation is the CRISPR-Cas9 system, a powerful tool derived from a natural defense mechanism found in bacteria (Figure 6).

Diagram showing the CRISPR-Cas system mechanism in bacteria. The process starts with the entry of double-stranded viral DNA into the cell. The viral DNA is then targeted for inactivation by the Cas III enzyme. The Cas III enzyme binds to the viral DNA, resulting in its cleavage and subsequent inactivation. The diagram includes labeled components such as 'Double-stranded viral DNA,' 'Viral DNA inactivation,' 'Binding of the Cas enzyme to target viral DNA,' and 'CRISPR-Cas complex with guide RNA
Figure 6. Diagram illustrating the CRISPR-Cas system in bacteria, showing how double-stranded viral DNA is targeted and inactivated by the Cas III enzyme. The process involves binding the Cas enzyme to the viral DNA, leading to its cleavage and inactivation.

CRISPR-Cas9 stands for Clustered Regularly Interspaced Short Palindromic Repeats associated with the Cas9 protein. This system uses a nuclease enzyme (Cas9) guided by RNA molecules to introduce breaks at specific DNA sequences.

The essential elements of this system are a guide RNA (gRNA) that homes in on the target sequence and a nuclease that can make a cut in the sequence that is bound by the guide RNA. By engineering guide RNAs complementary to a target gene, it is possible to target the nuclease to edit the gene in situ. In the CRISPR-Cas9 system, the Cas9 endonuclease cuts both strands of the gene sequence targeted by the guide RNA. This generates a double-strand break that the cell attempts to repair (Figure 7).

Double-strand breaks in DNA can be repaired by simple, nonhomologous end joining (NHEJ) or by homologous recombination. When a break is fixed by NHEJ, there is good chance that there will be deletions or insertions that will inactivate the gene they are in. Thus, targeted cleavage of a site by CRISPR-Cas9 can easily and specifically inactivate a gene, making it easy to characterize the gene’s function.

But, what if you wished to simply mutate the gene at a specific site to study the effect of the mutation? This, too, can be achieved. If a homologous sequence bearing the specific mutation (often referred to as a template strand or template gene) is provided homologous recombination can repair the break, and at the same time insert the exact mutation desired. It is obvious that if you can insert a mutation as just described, it should be possible to correct a mutation in the genome by cleaving at the appropriate spot and providing the correct sequence as a template for repair by homologous recombination. The simplicity of the system is what makes CRISPR-Cas9 such a powerful gene editing tool.

Illustration of the CRISPR-Cas9 mechanism showing how the guide RNA (gRNA) binds to the Cas9 enzyme, forming a complex that targets a specific DNA sequence. The guide RNA directs Cas9 to the target DNA, allowing Cas9 to make precise cuts in the DNA strand at the target location.
Figure 7. Diagram showing the CRISPR-Cas9 mechanism where the guide RNA directs the Cas9 enzyme to a specific DNA sequence, allowing for targeted DNA cutting.

LINK TO LEARNING


VISUAL CONNECTION


Video: Genetic Engineering Will Change Everything Forever – CRISPR

 

 

Biotechnology in Medicine and Agriculture

It is easy to see how biotechnology can be used for medicinal purposes. Knowledge of the genetic makeup of our species, the genetic basis of heritable diseases, and the invention of technology to manipulate and fix mutant genes provides methods to treat the disease. Biotechnology in agriculture can enhance resistance to disease, pest, and environmental stress, and improve both crop yield and quality.

Genetic Diagnosis and Gene Therapy

Scientists call the process of testing for suspected genetic defects before administering treatment genetic diagnosis by genetic testing. Depending on the inheritance patterns of a disease-causing gene, family members are advised to undergo genetic testing. For example, doctors usually advise women diagnosed with breast cancer to have a biopsy so that the medical team can determine the genetic basis of cancer development. Doctors base treatment plans on genetic test findings that determine the type of cancer. If inherited gene mutations cause the cancer, doctors also advise other female relatives to undergo genetic testing and periodic screening for breast cancer. Doctors also offer genetic testing for fetuses (or embryos with in vitro fertilization) to determine the presence or absence of disease-causing genes in families with specific debilitating diseases.

Gene therapy is a genetic engineering technique used to cure disease. In its simplest form, it involves the introduction of a good gene at a random location in the genome to aid the cure of a disease that is caused by a mutated gene. The good gene is usually introduced into diseased cells as part of a vector transmitted by a virus that can infect the host cell and deliver the foreign DNA (Figure 8). More advanced forms of gene therapy try to correct the mutation at the original site in the genome, such as is the case with treatment of severe combined immunodeficiency (SCID).

To cure disease using an adenovirus vector, a new gene intended to replace a defective one is packaged with the adenovirus genome. The genes that make the virus pathogenic are removed. The modified D N A is put inside the virus' capsid, or protein coat. The person to be cured is infected with the modified virus. Viral D N A enters the nucleus, where the modified gene can replace the defective one.
Figure 8: Gene therapy using an adenovirus vector can be used to cure certain genetic diseases in which a person has a defective gene. (credit: NIH)

Production of Vaccines, Antibiotics, and Hormones

Traditional vaccination strategies use weakened or inactive forms of microorganisms to mount the initial immune response. Modern techniques use the genes of microorganisms cloned into vectors to mass produce the desired antigen. Doctors then introduce the antigen into the body to stimulate the primary immune response and trigger immune memory. The medical field has used genes cloned from the influenza virus to combat the constantly changing strains of this virus.

Antibiotics are a biotechnological product. Microorganisms, such as fungi, naturally produce them to attain an advantage over bacterial populations. Cultivating and manipulating fungal cells produces antibodies.

Scientists used recombinant DNA technology to produce large-scale quantities of human insulin in E. coli as early as 1978. Previously, it was only possible to treat diabetes with pig insulin, which caused allergic reactions in humans because of differences in the gene product. In addition, doctors use human growth hormone (HGH) to treat growth disorders in children. Researchers cloned the HGH gene from a cDNA library and inserted it into E. coli cells by cloning it into a bacterial vector.

GMOs and Transgenic Organisms

Genetically Modified Organisms (GMOs) and transgenic organisms are vital in biotechnology for the production of complex proteins and for research purposes. While bacteria are commonly used to produce recombinant proteins, certain proteins or medical applications require modification of eukaryotic genomes. The term GMO refers to any organism, prokaryotic or eukaryotic, whose genome has been genetically altered. This could many having an existing gene deactivated or modified. Transgenic organisms are a type of GMO that have specifically had genetic material from another species edited into their genome, allowing them to express new traits or produce substances not naturally found in their species.

VISUAL CONNECTION


Video: Are GMOs Good or Bad? Genetic Engineering & Our Food

Manipulating the DNA of plants (i.e., creating GMOs) has helped to create desirable traits, such as disease resistance, herbicide and pesticide resistance, better nutritional value, and better shelf-life (Figure 9). Plants are the most important source of food for the human population. Farmers developed ways to select for plant varieties with desirable traits long before modern-day biotechnology practices were established.

Photo shows corn cobs with different colors, including yellow, white, red, and a mixture of these colors.
Figure 9: Corn, a major agricultural crop used to create products for a variety of industries, is often modified through plant biotechnology. (credit: Keith Weller, USDA)

We call plants that have received recombinant DNA from other species transgenic plants. Because they are not natural, government agencies closely monitor transgenic plants and other GMOs to ensure that they are fit for human consumption and do not endanger other plant and animal life. Because foreign genes can spread to other species in the environment, extensive testing is required to ensure ecological stability. Staples like corn, potatoes, and tomatoes were the first crop plants that scientists genetically engineered.

Transformation of Plants Using Agrobacterium tumefaciens

Gene transfer occurs naturally between species in microbial populations. Many viruses that cause human diseases, such as cancer, act by incorporating their DNA into the human genome. In plants, tumors caused by the bacterium Agrobacterium tumefaciens occur by DNA transfer from the bacterium to the plant. Although the tumors do not kill the plants, they stunt the plants and they become more susceptible to harsh environmental conditions. A. tumefaciens affects many plants such as walnuts, grapes, nut trees, and beets. Artificially introducing DNA into plant cells is more challenging than in animal cells because of the thick plant cell wall.

Researchers used the natural transfer of DNA from Agrobacterium to a plant host to introduce DNA fragments of their choice into plant hosts. In nature, the disease-causing A. tumefaciens have a set of plasmids, Ti plasmids (tumor-inducing plasmids), that contain genes to produce tumors in plants. DNA from the Ti plasmid integrates into the infected plant cell’s genome. Researchers manipulate the Ti plasmids to remove the tumor-causing genes and insert the desired DNA fragment for transfer into the plant genome. The Ti plasmids carry antibiotic resistance genes to aid selection and researchers can propagate them in E. coli cells as well.

The Organic Insecticide Bacillus thuringiensis

Bacillus thuringiensis (Bt) is a bacterium that produces protein crystals during sporulation that are toxic to many insect species that affect plants. Insects need to ingest Bt toxin in order to activate the toxin. Insects that have eaten Bt toxin stop feeding on the plants within a few hours. After the toxin activates in the insects’ intestines, they die within a couple of days. Modern biotechnology has allowed plants to encode their own crystal Bt toxin that acts against insects. Scientists have cloned the crystal toxin genes from Bt and introduced them into plants. Bt toxin is safe for the environment, nontoxic to humans and other mammals, and organic farmers have approved it as a natural insecticide.

Flavr Savr Tomato

The first GM crop on the market was the Flavr Savr Tomato in 1994. Scientists used antisense RNA technology to slow the softening and rotting process caused by fungal infections, which led to increased shelf life of the GM tomatoes. Additional genetic modification improved the tomato’s flavor. The Flavr Savr tomato did not successfully stay in the market because of problems maintaining and shipping the crop.

Glossary

antibiotic resistance
ability of an organism to be unaffected by an antibiotic’s actions
biotechnology
use of biological agents for technological advancement
Cas9
an endonuclease enzyme that cuts the DNA at the location specified by the guide RNA in the CRISPR-Cas9 system.
CRISPR
a genetic engineering tool derived from a bacterial immune system that allows for precise, targeted modification of DNA in living organisms.
foreign DNA
DNA that belongs to a different species or DNA that is artificially synthesized
gel electrophoresis
technique used to separate molecules on the basis of size using electric charge
gene targeting
method for altering the sequence of a specific gene by introducing the modified version on a vector
gene therapy
technique used to cure inheritable diseases by replacing mutant genes with good genes
genetic diagnosis
diagnosis of the potential for disease development by analyzing disease-causing genes
genetic engineering
alteration of the genetic makeup of an organism
genetic testing
process of testing for the presence of disease-causing genes
genetically modified organism (GMO)
organism whose genome has been artificially changed
guide RNA (gRNA)
a synthetic RNA molecule that guides the Cas9 enzyme to the specific sequence in the DNA to be edited.

host DNA
DNA that is present in the genome of the organism of interest

lysis buffer
solution to break the cell membrane and release cell contents
molecular cloning
cloning of DNA fragments
multiple cloning site (MCS)
site that multiple restriction endonucleases can recognize
polymerase chain reaction (PCR)
technique to amplify DNA
probe
small DNA fragment to determine if the complementary sequence is present in a DNA sample
protease
enzyme that breaks down proteins
recombinant DNA
combining DNA fragments that molecular cloning generates that do not exist in nature; also a chimeric molecule
recombinant protein
a gene’s protein product derived by molecular cloning
reproductive cloning
entire organism cloning
restriction endonuclease
enzyme that can recognize and cleave specific DNA sequences
reverse genetics
method of determining the gene’s function by starting with the gene itself instead of starting with the gene product
reverse transcriptase PCR (RT-PCR)
PCR technique that involves converting RNA to DNA by reverse transcriptase
ribonuclease
enzyme that breaks down RNA
Target DNA
the specific sequence in the genome that is recognized and cleaved by the CRISPR-Cas9 complex.

Ti plasmid
plasmid system derived from Agrobacterium tumifaciens that scientists have used to introduce foreign DNA into plant cells

transgenic
organism that receives DNA from a different species

Access for free at https://openstax.org/books/biology-2e/pages/1-introduction

License

Icon for the Creative Commons Attribution 4.0 International License

Introductory Biology Copyright © by will1278 and Various Authors - See Each Chapter Attribution is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.